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PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 1: Overview



• The goal is to understand the 
fundamental laws of nature from the 
high energy scatterings of particles in a 
complex collider environment.

• A multifaceted program: model building, 
cross-section calculations,  kinematic 
treatment, developing software 
packages for simulations (including 
detector effects) and analysis of data.

• An essential bridge between theory and 
experiment. 

Collider Physics



• It is a living subject, and constantly evolving. In recent years, a great deal 
of effort is developing ML tools for collider physics.

• Particles collide in the Large Hadron Collider (LHC) detectors (with ~ 108 

sensors) approximately 1 billion times per second, generating about one 
petabyte of collision data per second.

• How do we parse this huge amount of data to infer the underlying 
theory?

Collider Physics

TheoryExperiment



• Analyses of data such as classification, hypothesis testing, regression, 
and goodness-of-fit testing are based a statistical model p(x|θ) describing 
the probability of observing x given the parameters of a theory θ. 

• High dimensionality and large volume of particle physics data make 
these computationally formidable. 

• Traditionally, raw sensor data are processed into low-level objects e.g. 
calorimeter clusters & tracks. From these low-level components, we use 
algorithms to estimate the energy, momentum, & identity of particles. 
Event-level summaries are obtained from these reconstructed objects. 

• A central role of machine learning in collider physics is to improve this 
data reduction, reducing the relevant information contained in the low-
level, high-dim. data into a higher-level, smaller-dim. space. 

Why Machine Learning?
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Data is BIG

Table 1: A table taken from [1] summarizing projected computing needs for cosmology simulations and experiments.
Here PB stands for petabytes (⇠ 1015 bytes) and EB stands for exabytes (⇠ 1018 bytes). Analyzing large data sets and
constructing large theoretical simulations are ever-growing in importance.

1 Introduction
Data science is the methodical approach of processing and understanding large, complex data sets by combining the
methods of statistics, computer science, and logic with domain science to extract knowledge where simple observation
by human investigators would fail, where data sets become so overwhelming that even an army of scientists would be
no match to the onslaught of data. The methods that data science brings to bear carry commonalities across domain
science, making it a truly interdisciplinary field and a natural investment target for the faculty cluster hire initiative.

The fields of cosmology and astronomy are currently going through a data revolution, entering what is often called
the survey era. Starting with the Sloan Digital Sky Survey (SDSS) in 2000, astronomical observation has come to
rely more and more on large telescopes systematically observing large regions of the sky with ever deeper exposures
and ever increasing detail, adding spectral and temporal dimensions. These surveys produce exponentially increasing
amounts of data in the quest to understand the origin of the cosmic structure (see Table 1).

In order to answer some of the most important modern scientific questions, vast samples of astrophysical objects
must be observed with multiple experimental techniques and probes, both to reach the desired experimental sensitivi-
ties and to break degeneracies. The diagnostic power of the new massive surveys of the cosmos (described below) lies
in comparing the volume of high-dimensional data to increasingly sophisticated theoretical physics models. The
data mining complexity of this approach presents a qualitatively new challenge which can only be tackled by drawing
on synergistic advances in statistics and data science.

Some of the research activities in this interdisciplinary proposal (a collaboration of Physics, Astronomy, and
Statistics) are linked to Nobel-prize-worthy fundamental research, and through this collaboration, it is extremely
likely that the impact of the UW group in this global endeavor will be significant. Because the volume of data is
expected to be too large for traditional “human” analysis, innovative techniques relying on training machines and
novel stochastic methods must be developed.

The UW-Madison with its Center for High Throughput Computing (CHTC) is ideally positioned to successfully
solve the challenges of this large scale scientific computing problem. The CHTC leads the successful nationwide Open
Science Grid (OSG) collaboration and facilities, and has enabled building many national and international scientific
computing communities. In particular the CHTC has had a long and productive collaboration with physicists and
astronomers in the LHC experiments, IceCube, LIGO, and DES. The CHTC has also started working with NCSA on
their LSST computing needs, which as explained below is significant to the broad goals of the cluster hire.

In §2, we elaborate on the domain-specific science drivers, how data science is necessary to address them, and
explain why it is important for UW-Madison to have greater strength in this area through a cluster hire.

2 Research Description
2.1 Theoretical Cosmology
2.1.1 Science

One of the main goals of theoretical cosmology is to understand the origin of cosmic structure. This means that starting
with a hypothetical theory of initial conditions for the underlying field theory that governs the universe, we compute

2

Cosmology is marching into a big data era:

Table taken from 1311.2841
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Table taken from 1311.2841



Data is BIG

Table 1: A table taken from [1] summarizing projected computing needs for cosmology simulations and experiments.
Here PB stands for petabytes (⇠ 1015 bytes) and EB stands for exabytes (⇠ 1018 bytes). Analyzing large data sets and
constructing large theoretical simulations are ever-growing in importance.

1 Introduction
Data science is the methodical approach of processing and understanding large, complex data sets by combining the
methods of statistics, computer science, and logic with domain science to extract knowledge where simple observation
by human investigators would fail, where data sets become so overwhelming that even an army of scientists would be
no match to the onslaught of data. The methods that data science brings to bear carry commonalities across domain
science, making it a truly interdisciplinary field and a natural investment target for the faculty cluster hire initiative.

The fields of cosmology and astronomy are currently going through a data revolution, entering what is often called
the survey era. Starting with the Sloan Digital Sky Survey (SDSS) in 2000, astronomical observation has come to
rely more and more on large telescopes systematically observing large regions of the sky with ever deeper exposures
and ever increasing detail, adding spectral and temporal dimensions. These surveys produce exponentially increasing
amounts of data in the quest to understand the origin of the cosmic structure (see Table 1).

In order to answer some of the most important modern scientific questions, vast samples of astrophysical objects
must be observed with multiple experimental techniques and probes, both to reach the desired experimental sensitivi-
ties and to break degeneracies. The diagnostic power of the new massive surveys of the cosmos (described below) lies
in comparing the volume of high-dimensional data to increasingly sophisticated theoretical physics models. The
data mining complexity of this approach presents a qualitatively new challenge which can only be tackled by drawing
on synergistic advances in statistics and data science.

Some of the research activities in this interdisciplinary proposal (a collaboration of Physics, Astronomy, and
Statistics) are linked to Nobel-prize-worthy fundamental research, and through this collaboration, it is extremely
likely that the impact of the UW group in this global endeavor will be significant. Because the volume of data is
expected to be too large for traditional “human” analysis, innovative techniques relying on training machines and
novel stochastic methods must be developed.

The UW-Madison with its Center for High Throughput Computing (CHTC) is ideally positioned to successfully
solve the challenges of this large scale scientific computing problem. The CHTC leads the successful nationwide Open
Science Grid (OSG) collaboration and facilities, and has enabled building many national and international scientific
computing communities. In particular the CHTC has had a long and productive collaboration with physicists and
astronomers in the LHC experiments, IceCube, LIGO, and DES. The CHTC has also started working with NCSA on
their LSST computing needs, which as explained below is significant to the broad goals of the cluster hire.

In §2, we elaborate on the domain-specific science drivers, how data science is necessary to address them, and
explain why it is important for UW-Madison to have greater strength in this area through a cluster hire.

2 Research Description
2.1 Theoretical Cosmology
2.1.1 Science

One of the main goals of theoretical cosmology is to understand the origin of cosmic structure. This means that starting
with a hypothetical theory of initial conditions for the underlying field theory that governs the universe, we compute

2

Cosmology is marching into a big data era:

~ 200PB of archived data in the first 7 years of the LHC.

In terms of sheer volume, nothing trumps the volume of 
theoretical data of string vacua. A rough estimate gives:

10500 (Type IIB flux vacua) 10272,000 (F theory flux vacua)

Table taken from 1311.2841



Big Dataset

• LHC (raw data/event ~ 1MB), 
6x108 events/second.

• GAIA: 1.1x109 stars

• LSST: 10 billion galaxies.

• Searching in large datasets is key. 
How to find needle in a haystack.

• Automation is much needed to 
enable analysis of dataset 
(~getting self driving cars to work).

The NA62 Challenge

14/06/2011 - FH 1Detector Physics Meeting

How to find a needle in a Haystack?



Astrophysics

• Galaxy classification: given 
an astrophysical observation, 
which galaxy type do we see? 

• Done by human for a long time 
(e.g., Galaxy Zoo).

• Greatly enhanced by ML: using 
technology from image 
classification. 

https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/overview/description

http://benanne.github.io/2014/04/05/galaxy-zoo.html 



• Problem: Generating samples from high-dimensional probability 
distributions (e.g. to understand structure formation in the Early 
Universe or expected number of events at the LHC). 

• ML offers shortcuts to standard Monte Carlo techniques. 

• Relating to image generation, image translation (medical physics) 

Accelerating Simulations

https://www.simonsfoundation.org/2019/06/26/ai-universe-simulation/



How about in Theoretical Physics?



• Machine Learning and Physics share deep 
connections, in particular with statistical/
many body physics (Boltmann machines, 
softmax, etc). 

• Classification of phases of matter: Finding 
boundaries in the phase diagram.

• Done by humans (e.g., 2D Ising model)

• ML techniques have been developed.

• Again using technology from (image) 
classification for physical dataset.

Condensed Matter Physics

The Topology of Data:
From String Theory to Cosmology to Phases of Matter

techniques. In the approximation that the vacuum density is just the volume form on

moduli space, the surface area of the boundary will just be the surface area of the boundary

in moduli space. Taking the region R to be a sphere in moduli space of radius r, we find

A(S1)

V (S1)
∼

√
K

r

so the condition Eq. (5.2) becomes

L >
K

r2
. (5.3)

Thus, if we consider a large enough region, or the entire moduli space in order to find

the total number of vacua, the condition for the asymptotic vacuum counting formulas we

have discussed in this work to hold is L > cK with some order one coefficient. But if we

subdivide the region into subregions which do not satisfy Eq. (5.3), we will find that the

number of vacua in each subregion will show oscillations around this central scaling. In

fact, most regions will contain a smaller number of vacua (like S above), while a few should

have anomalously large numbers (like S′ above), averaging out to Eq. (5.1).

5.1 Flux vacua on rigid Calabi-Yau

As an illustration of this, consider the following toy
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Figure 6: Values of τ for rigid CY
flux vacua with Lmax = 150.

problem with K = 4, studied in [1]. The configuration

space is simply the fundamental region of the upper

half plane, parameterized by τ . The flux superpoten-

tials are taken to be

W = Aτ + B

with A = a1 + ia2 and B = b1 + ib2 each taking values

in Z+ iZ. This would be obtained if we considered flux

vacua on a rigid Calabi-Yau, with no complex structure

moduli, b3 = 2, and the periods Π1 = 1 and Π2 = i.

The tadpole condition NηN/2 ≤ L becomes

ImA∗B ≤ L (5.4)

One then has

DW = 0 ↔ τ̄ = −B

A
. (5.5)

Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound Eq. (5.4), taking one representative of each orbit

of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,

0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from

Eq. (5.5) and map it into the fundamental region by an SL(2, Z) transformation. The

resulting plot for L = 150 is shown in figure 6.
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https://mbiagetti.gitlab.io/cosmos/nbody/
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String Theory and Mathematical Physics

• Detecting features in string theory solutions.

• Found mostly by analyzing simple examples.

• Can more features be found by ML?

• Finding “good”/relevant features without domain 
knowledge can be done with “unsupervised” 
learning (e.g. dimensionality reduction, 
topological data analysis, ….).

• Large mathematical datasets: Calabi-Yau 
manifolds (extra dimensions in string theory), …
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Active area of research with devoted conference series. See e.g. 
https://indico.cern.ch/event/958074/ for a recent meeting.

https://indico.cern.ch/event/958074/


Simulations for Theory

• Problem: Generating samples from high-dimensional probability 
distributions is a ubiquitous problem for any strongly coupled 
system (condensed matter or QCD). 

• Another such unknown distribution are string theory vacua.

https://phillipi.github.io/pix2pix/



What are the goals of this course?



• Introduce standard ML tools: you should be able to perform 
standard ML tasks after this course.

• Programming background is not assumed, only willingness to 
code. The rest you can pick up from examples... 

• This course is not about the fastest implementation of algorithm 
X, the emphasis is on the concepts rather than efficiencies. 

• Discuss examples of physics problems which can be addressed 
using ML. Hopefully prepare you for research in this direction. 

Goals of this Course



• Basic of Machine Learning

• Optimizers

• Regression

• Logistic/Multi-class classification

• A survey of classifiers

• Neural Networks

• Unsupervised learning

Outline of the Course

• Variational Methods

• Generative Adversarial Networks

• Normalizing Flows

• Reinforcement Learning

• Applications in Physics



• Collider Physics (Updated Edition), by Vernon D. Barger and Roger J.N. Phillips  

• Deep Learning, by Ian Goodfellow, Joshua Bengio, Aaron Courville  

• Information Theory, Inference and Learning Algorithms, by David J.C, MacKay  

• A high-bias, low-variance introduction to Machine Learning for physicists, Phys.  
Rept. 810 (2019): 1-124, by Panjaj Mehta et al.  

• Data science applications to string theory, Phys. Rept. 839 (2020), 1-117, by Fabian  
Ruehle.  

• Machine learning and the physical sciences, Rev. Mod. Phys. 91 (2019) no.4, 
045002, [arXiv:1903.10563 [physics.comp-ph]], by Giuseppe Carleo et al.  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• ML is a subject that you learn by experimenting – think of this 
course as a theory lab for you to try out various computational, 
statistical and mathematical methods.

• Hands on experience is more valuable than book knowledge. You 
learn mostly from practical examples. 

• Get familiarize with Python (mostly python3) and Jupyter. Your 
first assignment is to get to know some commonly used packages.

• Google is your friend. Usually any problem you encounter, 
somebody else has encountered beforehand. Search for answers! 

• Physics ∩ ML is a biweekly seminar series. Please sign up for the 
mailing list at www.physicsmeetsml.org for zoom links.

Resources
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Michelle Ntampaka, Space Telescope Science Institute, 12:00 EDT

1010
Feb 2021

TBA
Ben Wandelt, Flatiron Institute, 12:00 EDT

Past talks:

1313
Jan 2021

Quantum Machine Learning in High Energy Physics
Sofia Vallecorsa, CERN, 12:00 EDT
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http://www.physicsmeetsml.org


• Your grade is based on your participation in the exercises (no exams!)

• The purpose of the exercises is to get you familiarized with the 
methods/algorithms introduced in lectures and packages installed.

• You are encouraged to discuss with your classmates but you should 
submit your own solutions (this is how you learn).

• You will be asked to grade each other’s solutions submitted in .ipynb 
format (so we can test run your code). 

• Text-based answers can be included in markdown in these 
notebooks. 

• Many exercises involve plots and it is much more convenient to see 
them directly in a notebook (think of this as your theory “lab book”).

• Your participation = your solution + your grading of your classmate.

Exercises



• Only for those who signed up for 3 credits: You can give an oral 
presentation or write up a term paper on a topic related to Collider 
Physics and Machine Learning. I am happy to suggest possible topics. 

• The Physics ∩ ML seminar series has many nice talks that would make a 
good topic for your oral presentation or term paper, e.g.,

Paper/Presentation
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• Be able to tell a friend examples of problems where ML can be 
used in collider physics (and physics in general).

• Where can ML be useful in Theoretical Physics?

• How can a physics problem be related to identifying cats and 
dots on images 

• Remember to start installing the software packages (Exercise 1) 
and get familiarized with them.

Summary 


