PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

age: Fermilab/CERN)

Lecture 1: Overview



Collider Physics

* The goal is to understand the
fundamental laws of nature from the

high energy scatterings of particles in a CO LLIDER
complex collider environment. PHYS [CS

* A multifaceted program: model building, VEPATED; ERITION
cross-section calculations, kinematic
treatment, developing software
packages for simulations (including
detector effects) and analysis of data.

* An essential bridge between theory and
experiment.




Collider Physics

e l|tis a living subject, and constantly evolving. In recent years, a great deal
of effort is developing ML tools for collider physics.

e Particles collide in the Large Hadron Collider (LHC) detectors (with ~ 108
sensors) approximately 1 billion times per second, generating about one
petabyte of collision data per second.

e How do we parse this huge amount of data to infer the underlying
theory?
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Why Machine Learning?

Analyses of data such as classification, hypothesis testing, regression,
and goodness-of-fit testing are based a statistical model p(xI0) describing
the probability of observing x given the parameters of a theory 0.

High dimensionality and large volume of particle physics data make
these computationally formidable.

Traditionally, raw sensor data are processed into low-level objects e.qg.
calorimeter clusters & tracks. From these low-level components, we use
algorithms to estimate the energy, momentum, & identity of particles.
Event-level summaries are obtained from these reconstructed objects.

A central role of machine learning in collider physics is to improve this
data reduction, reducing the relevant information contained in the low-
level, high-dim. data into a higher-level, smaller-dim. space.



Unity of Physics
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Cosmology is marching into a big data era:

Data is BIG

Experimental Data| 2013 2020 2030+
Storage 1PB 6PB 100-1500PB
Cores 10? 70K 300+K
CPU hours 3x10% hrs|2 x 10% hrs| ~ 107 hrs
Simulations 2013 2020 2030+
Storage 1-10 PB | 10-100PB |> 100PB - 1EB
Cores 0.1-1M | 10-100M > 1G
CPU hours 200M >20G > 100G

data volume schedule

SDSS 40 TB 2000-2020

DESI 2 PB 2019-2027

LSST > 60 PB 2020-2030

Euclid >10 PB 2020-2027

WFIRST >2 PB 2023-2030
CMB-S4 | €(1) (PB) | 2020-2027(?)
SKA 4.6 EB 2019-2030(?)

Table taken from 1311.2841
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~ 200PB of archived data in the first 7 years of the LHC.
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~ 200PB of archived data in the first 7 years of the LHC.

In terms of sheer volume, nothing trumps the volume of

theoretical data of string vacua. A rough estimate gives:

10°%° (Type IIB flux vacua)

1027%999 (F theory flux vacua)




Big Dataset

LHC (raw data/event ~ 1MB),
6x108 events/second.

GAIA: 1.1x10° stars

LSST: 10 billion galaxies.

Searching in large datasets is key.

How to find needle in a haystack.

Automation is much needed to
enable analysis of dataset

(~getting self driving cars to work).
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Astrophysics

e Galaxy classification: given
an astrophysical observation,
which galaxy type do we see?

* Done by human for a long time
(e.g., Galaxy Zoo).

* Greatly enhanced by ML: using
technology from image
classification.
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Accelerating Simulations

Problem: Generating samples from high-dimensional probability
distributions (e.g. to understand structure formation in the Early
Universe or expected number of events at the LHC).

ML offers shortcuts to standard Monte Carlo techniques.

Relating to image generation, image translation (medical physics)
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https://www.simonsfoundation.org/2019/06/26/ai-universe-simulation/



How about in Theoretical Physics?



Condensed Matter Physics

Machine Learning and Physics share deep  Order
connections, in particular with statistical/ |
many body physics (Boltmann machines,
softmax, etc).

Classification of phases of matter: Finding
boundaries in the phase diagram.

Done by humans (e.g., 2D Ising model)

ML techniques have been developed.

Again using technology from (image)
classification for physical dataset.



String Theory and Mathematical Physics

Detecting features in string theory solutions.

.......

Found mostly by analyzing simple examples.

Can more features be found by ML?

~inding “good”/relevant features without domain
Knowledge can be done with “unsupervised”
earning (e.g. dimensionality reduction,
topological data analysis, ....).

Large mathematical datasets: Calabi-Yau
manifolds (extra dimensions in string theory), ...

Active area of research with devoted conference series. See e.g.
https://indico.cern.ch/event/958074/ for a recent meeting.



https://indico.cern.ch/event/958074/

Simulations for Theory

* Problem: Generating samples from high-dimensional probability
distributions is a ubiquitous problem for any strongly coupled
system (condensed matter or QCD).

* Another such unknown distribution are string theory vacua.
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https:/phillipi.github.io/pix2pix/



What are the goals of this course?



Goals of this Course

Introduce standard ML tools: you should be able to perform
standard ML tasks after this course.

Programming background is not assumed, only willingness to
code. The rest you can pick up from examples...

This course is not about the fastest implementation of algorithm
X, the emphasis is on the concepts rather than efficiencies.

Discuss examples of physics problems which can be addressed
using ML. Hopefully prepare you for research in this direction.



Outline of the Course

Basic of Machine Learning
Optimizers

Regression

Logistic/Multi-class classification
A survey of classifiers

Neural Networks

Unsupervised learning

Variational Methods

Generative Adversarial Networks
Normalizing Flows
Reinforcement Learning

Applications in Physics



References

Collider Physics (Updated Edition), by Vernon D. Barger and Roger J.N. Phillips
Deep Learning, by lan Goodfellow, Joshua Bengio, Aaron Courville
Information Theory, Inference and Learning Algorithms, by David J.C, MacKay

A high-bias, low-variance introduction to Machine Learning for physicists, Phys.
Rept. 810 (2019): 1-124, by Panjaj Mehta et al.

Data science applications to string theory, Phys. Rept. 839 (2020), 1-117, by Fabian
Ruehle.

Machine learning and the physical sciences, Rev. Mod. Phys. 91 (2019) no.4,
045002, [arXiv:1903.10563 [physics.comp-ph]], by Giuseppe Carleo et al.



Resources

ML is a subject that you learn by experimenting — think of this
course as a theory lab for you to try out various computational,
statistical and mathematical methods.

Hands on experience is more valuable than book knowledge. You
learn mostly from practical examples.

Get familiarize with Python (mostly python3) and Jupyter. Your
first assignment is to get to know some commonly used packages.

Google is your friend. Usually any problem you encounter,
somebody else has encountered beforehand. Search for answers!

Physics n ML is a biweekly seminar series. Please sign up for the
mailing list at www.physicsmeetsml.org for zoom links.

&35 Physics n ML

S
o ? a virtual hub at the interface of theoretical physics and deep learning.


http://www.physicsmeetsml.org

Exercises

Your grade is based on your participation in the exercises (no exams!)

The purpose of the exercises is to get you familiarized with the
methods/algorithms introduced in lectures and packages installed.

You are encouraged to discuss with your classmates but you should
submit your own solutions (this is how you learn).

You will be asked to grade each other’s solutions submitted in .ipynb
format (so we can test run your code).

Text-based answers can be included in markdown in these
notebooks.

Many exercises involve plots and it is much more convenient to see
them directly in a notebook (think of this as your theory “lab book”).

Your participation = your solution + your grading of your classmate.



Paper/Presentation

* Only for those who signed up for 3 credits: You can give an oral
presentation or write up a term paper on a topic related to Collider
Physics and Machine Learning. | am happy to suggest possible topics.

 The Physics n ML seminar series has many nice talks that would make a
good topic for your oral presentation or term paper, e.g.,

5 Physics n ML

/)
B ’ a virtual hub at the interface of theoretical physics and deep learning.

13 Quantum Machine Learning in High Energy Physics
Jan2021  Sofia Vallecorsa, CERN, 12:00 EDT

2 O Building symmetries into generative flow models

May Phiala Shanahan, MIT, 12:00 EDT
2020



Summary

Be able to tell a friend examples of problems where ML can be
used in collider physics (and physics in general).

Where can ML be useful in Theoretical Physics?

How can a physics problem be related to identifying cats and
dots on images

Remember to start installing the software packages (Exercise 1)
and get familiarized with them.



