PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

age: Fermilab/CERN)

Lecture 10: Feedforward Neural Networks

Recap of Lecture 9

e Kernel methods
e Soft margins

e Ensemble Methods
* Bagging
* Boosting

e Random Forest

Outline for today

e Feedforward neural networks
e Backpropagation
* Regularization

References: Deep Learning Book, 1803.08823

Neural Networks: History

Old subject (e.g., Hebbian learning,

Rosenblatt 1958 Perceptron, ...) NEg?;ftzdp?;ti;ig%nts

Revived interest since ~2010 due to:

Performance increase on
classification tasks via trained deep © w
neural networks S 3000

Calculations on GPUs possible I I I I I I ‘ ‘
Open source packages and ' I I I I e e = i

Implementations: Tensorflow,
Pytorch, Keras,

Image: https:/medium.com/syncedreview/neurips-2018-through-the-eyes-of-first-timers-5156384900bd

Neural Networks (NNs)

* Neural Networks can be used for different ML tasks, e.qg.,

* General purpose NNs for supervised learning

* NNs designed specifically for image processing, the most
prominent e.g. being Convolutional Neural Networks (CNNSs)

* NNs for sequential data e.g. Recurrent Neural Networks (RNNSs)

* NNs for unsupervised learning e.g. Deep Boltzmann Machines.

* High-level libraries & packages, e.g., Caffe: https://caffe.berkeleyvision.org

Keras: https://keras.io

Pytorch: https:/pytorch.org

TensorFlow: https:/www.tensorflow.org

https://keras.io

Neural Network Basics

 Neural networks are neural-inspired nonlinear models for ML
(powerful extensions of linear & logistic regression, softmay, ...)

e Basic unit is a neuron: A
X " linear nonlinearity
Linear operation z)=w".x+b =x".wl) \wz‘ ya
Input X, ———— wWX+h — —> output
W, %
Non-linearity ai(x) = oi(z"), x3/

* A NN consists of many neurons stacked into layers:

B hidden
layers
Outputs of the input layer A
= inputs of the next hidden layer output
>~ layer
P S
The output layer is often a simple classifier input O_’
e.d., soft-max function or a linear regression ¢’ O/

Activation Function

Perceptron Sigmoid Tanh
| 1 _/__ 1
) o) | L /
z tanh
q ! - ! 14+e—* - -1 anh(2)
-5 0 5 -5 0 5 -5 0 5
ReLU Leaky ReLU ELU
6 - 6 - - 6 — -
4 max(0, z) 4'(),1zifzg() 4l er—1if2<0
2 2) 2ifz>0 2 zifz>0
0 0 0
-5 0 5 -5 0 5 -5 0 5
Rectified Linear Unit Exponential Linear Unit

Train neural nets using gradient descent.

Perceptron: derivative is either zero or infinite (not suitable)
Sigmoid, Tanh: differentiable but has the drawback of saturation
do /0z — Oforz > 1.

RelLU, Leaky RelLU, ELU: can overcome this vanishing gradient problem.

Network Architecture

The way in which neurons are layered and connected is known as
the network architecture.

Hidden layers: often multiple layers (deep networks)

Size of layer (i.e. how many nodes needed): depends on
problem (hyperparameter)

Design depends on the task, the amount and type of data. Certain
architectures are easier to train, others are better in learning
complicated features.

Greatly expands the representational power (expressivity)
compared with a simple softmax or linear regression.

Universal Approximation Theorem (1989)

Neural network with a single hidden layer can approximate any
continuous, multi-input/multi-output functions with arbitrary accuracy.

iy

1 TN A e,
"\ e \/
Nt - N

?
\ § N QX I 12 Q ,”'\,a\ I
TZ _// O O W

H\

A visual proof that neural nets can compute any function
http:/neuralnetworksanddeeplearning.com/chap4.html

Training Deep Networks

e Construct a loss function:

m Il the weights and biases
Mean sq. error . 1 S 2 a
(W)= =) i —yi(w)), '
(linear regression) n ; / In the network
Cross-entropy . - A A
. 7 (W) =— > yilogyi(w)+ (1—y;)log|1—yi(w)].
(binary classification) ; [|
n M-1
Softmax E(W) = =) > Yin 108 Jin(W) . 1, ify;=m
(multi-class classification) =1 m=0 . ™ 10, otherwise.
‘|‘(1 _.Vim)log [1 _.Vim(w)] .

e Use gradient descent to minimize the cost function and find the
optimal weights and biases.

* Neural networks contain multiple hidden layers that make taking
the gradient computationally more difficult (backpropagation).

Backpropagation

Need to calculate as many gradients as parameters at each step of
the gradient descent.

The backpropagation algorithm exploits the layered structure of
neural networks to more efficiently compute gradients.

Systematic use of chain rule (summarized by 4 equations).
Assume there are L layers in the network, [= 1,..., L.
Denote by w jlk the weight for the connection from the k-th neuron in

layer [— 1 to the j-th neuron in layer [(whose bias is bjl).

For feedforward network, the activation ajl of the J-th neuron:

d=o (Z whay !+ b}) = a(z), linear weighted sum: 7z =) "wja;" +1b].
k k

Backpropagation

The cost function £ depends directly on the activities of the output

layer ajL, and indirectly on the activities of neurons in lower layers.

Define the error of the j-th neuron in the [-th layer:

d0E JE
This error can alternatively be interpreted as:

0E QE db; BE
17 9zl ablazl — obl (1)
J] J

Using chain rule: TS a7
07 = aztt oz

= (Z Afflw’k?> o'(z)). (111

Backpropagation

* The last backpropagation comes from differentiating the cost
function w.r.t. the weight:

!
OF JE 0z [11

_ (IV)
0 w}k BZJ-I d w}k

The Backpropagation Algorithm

1. Activation at input layer: calculate the activations a} of all the neurons in the input layer.

2. Feedforward: starting with the first layer, exploit the feed-forward architecture through Eq. (123) to compute z'
and d' for each subsequent layer.

3. Error at top layer: calculate the error of the top layer using Eq. (I). This requires to know the expression for the
derivative of both the cost function E(w) = E(a!) and the activation function o (z).

4. “Backpropagate” the error: use Eq. (III) to propagate the error backwards and calculate AJ’. for all layers.

5. Calculate gradient: use Eqs. (I1) and (IV) to calculate % and ;TE,
j ji

Problem of Vanishing or Exploding Gradients

lllustrate this problem with a network with 1 neuron per layer

0 0 0 0 0]

o>—0—0—0--0®

w w w

Backpropagating the error (assuming equal weights):

L—1 L—1
Al = AT Two'(z) = Akw) [[o'(z) = A].L(wo(’))L
j=0 i=0

The errors and their gradients vanish/blow-up unless wo, ~ 1.

Avoid vanishing and explosion of gradients by using appropriate
initialization of weights and regularization (e.g. gradient clipping,
batch normalization), and using non-linearities that do not saturate.

Finding ways to solve this problem is an active area of research.

Phases of Weights

d

0.25 T T T ¥
Trainable vs non-trainable depends L F
on weight initialization.

0.15 F d i

52 Ordered K.
Chaotic regime: network not trainable ™| S
. . . R4 Chaotic

(explosion of gradients), system is T
unstable. o5 s 20 25

Ordered regime: potentially vanishing
gradients.

Training near phase boundary most
efficient.

Bahri et al, Statistical Mechanics of Deep Learning:
https://www.annualreviews.org/doi/pdf/10.1146/annurev-conmatphys-031119-050745

Regularizing Neural Networks

Implicit Regularization of SGD

e [nitialization: random weights (to break leftover symmetries),
Gaussianly distributed (experiment with different variances).

e Hyperparameter tuning: search for optimal values on a log scale.

o Early stopping: divide training data into a training set (larger) and
a validation set (smaller)

Error
Validation set
i
E Training set
0 Early Number of

stopping ierations

Dropout

* Prevent overfitting by reducing spurious correlations among
neurons in network. Similar idea as in bagging in ensemble
methods, but without using different datasets.

 Randomly dropping out neurons (and their connections) during
each step of training. Gradient descent only performed on this
subset of neurons. Predictions made with all neurons active.

(N,

Standard Q weights are present only

Neural Net]]
Q/ a fraction p of the time,
rescale weights:

%/YO\ Wtest = PWhrain-
w30 /® D

Batch Normalization

 Observation: training works best when inputs are centered around
zero with respect to bias (wx+b) for activation like tanh, sigmoid:

Sigmoid

avoid such points - -
\1-

0 ;/1\\
1! =g~

large gradients

-9 0 5]

 Batch Normalization: additional layers which standardize inputs by
the mean and variance of the mini-batch.

Batch Normalization

e Standardize inputs:

| Sigmoid | 4l zh —]E[z,’{],
1 _/_ V/ Var(z,]
0 '1\
1l lte—2 _\ Keep this info. A drawback is that it
. . , forces the network to live purely in
.5 0 5 the linear region around z = 0

e Scale and shift inputs with learnable parameters:
a o N P | l
Z — L = Vi + IBk'

e Initialize the NN with standard inputs at the beginning of training.
Backpropagation then adjusts y and 3 during training.

 Advantage: improves learning speed, acts as a regularizer.

Deep Learning Packages

» Kersas: High-level framework, less control over the operations in
between the layers.

 TensorFlow (supported by Google): construct data flow graphs with
nodes (activations) and edges (data array).

e Pytorch: controls over the inter- and intra-layer operations w/o the
need to introduce computational graphs

U AWON =

SUSY Dataset

data set size
accuracy (%)

100%
le-05 0.0001 0.001

80%
1000
10000 60%
100000 40%
200000

20%
learning rate

0%

Collect and pre-process the data.

Define the model and its architecture.
Choose the cost function and the optimizer.
Train the model.

Evaluate and study the model performance on the test data.
Use the validation data to adjust the hyperparameters (and,

performance for the specific dataset.

Experiment with Pytorch in Notebook 13

http:/physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB13_CIX-DNN_susy_Pytorch.html

Adjust hyperparameters e.g. learning
rate and training set size.

Optimal performance at the edge

of the grid, extend the grid size
to obtain better results.

if necessary, network architecture) to optimize

Summary

Feedforward neural networks
Backpropagation
Implementation of neural networks with Keras

Regularization

