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Recap of Lecture 9

• Kernel methods

• Soft margins

• Ensemble Methods

• Bagging

• Boosting

• Random Forest



Outline for today

• Feedforward neural networks

• Backpropagation

• Regularization 

References: Deep Learning Book, 1803.08823



Neural Networks: History

• Old subject (e.g., Hebbian learning, 
Rosenblatt 1958 Perceptron, …) 

• Revived interest since ~2010 due to:

• Performance increase on 
classification tasks via trained deep 
neural networks

• Calculations on GPUs possible

• Open source packages and 
implementations: Tensorflow, 
Pytorch, Keras, ….

NEURIPS participants
(started in 1987)

Image: https://medium.com/syncedreview/neurips-2018-through-the-eyes-of-first-timers-5156384900bd



Neural Networks (NNs)

• Neural Networks can be used for different ML tasks, e.g.,

• General purpose NNs for supervised learning

• NNs designed specifically for image processing, the most 
prominent e.g. being Convolutional Neural Networks (CNNs)

• NNs for sequential data e.g. Recurrent Neural Networks (RNNs)

• NNs for unsupervised learning e.g. Deep Boltzmann Machines. 

• High-level libraries & packages, e.g., Caffe: https://caffe.berkeleyvision.org

Keras: https://keras.io

Pytorch: https://pytorch.org

TensorFlow: https://www.tensorflow.org

https://keras.io


Neural Network Basics

• Neural networks are neural-inspired nonlinear models for ML 
(powerful extensions of linear & logistic regression, softmax, …) 

• Basic unit is a neuron:

• A NN consists of many neurons stacked into layers:
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Fig. 35. Basic architecture of neural networks. (A) The basic components of a neural network are stylized neurons consisting of a linear transformation
that weights the importance of various inputs, followed by a non-linear activation function. (b) Neurons are arranged into layers with the output
of one layer serving as the input to the next layer.

Fig. 36. Possible non-linear activation functions for neurons. In modern DNNs, it has become common to use non-linear functions that do not
saturate for large inputs (bottom row) rather than saturating functions (top row).

Historically in the neural network literature, common choices of nonlinearities included step-functions (perceptrons),
sigmoids (i.e. Fermi functions), and the hyperbolic tangent. More recently, it has become more common to use rectified
linear units (ReLUs), leaky rectified linear units (leaky ReLUs), and exponential linear units (ELUs) (see Fig. 36). Different
choices of non-linearities lead to different computational and training properties for neurons. The underlying reason for
this is that we train neural nets using gradient descent based methods, see Section 4, that require us to take derivatives
of the neural input–output function with respect to the weights w(i) and the bias b(i).

Notice that the derivatives of the aforementioned non-linearities � (z) have very different properties. The derivative
of the perceptron is zero everywhere except where the input is zero. This discontinuous behavior makes it impossible to
train perceptrons using gradient descent. For this reason, until recently the most popular choice of non-linearity was the
tanh function or a sigmoid/Fermi function. However, this choice of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the activation function saturates and the derivative of the output with
respect to the weights tends to zero since @�/@z ! 0 for z � 1. Such ‘‘vanishing gradients’’ are a feature of any saturating
activation function (top row of Fig. 36), making it harder to train deep networks. In contrast, for a non-saturating activation
function such as ReLUs or ELUs, the gradients stay finite even for large inputs.

9.1.2. Layering neurons to build deep networks: network architecture
The basic idea of all neural networks is to layer neurons in a hierarchical fashion, the general structure of which is

known as the network architecture (see Fig. 35). In the simplest feed-forward networks, each neuron in the input layer
of the neurons takes the inputs x and produces an output ai(x) that depends on its current weights, see Eq. (118). The
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and true fundamentals, while pointing out what, from our current vantage point, seem like promising new techniques. The
field is rapidly evolving and readers are urged to read papers and to implement these algorithms themselves in order to
gain a deep appreciation for the incredible power of modern neural networks, especially in the context of image, speech,
and natural language processing, as well as limitations of the current methods.

In physics, DNNs and CNNs have already found numerous applications. In statistical physics, they have been applied
to detect phase transitions in 2D Ising (Tanaka and Tomiya, 2017a) and Potts (Li et al., 2017) models, lattice gauge
theories (Wetzel and Scherzer, 2017), and different phases of polymers (Wei et al., 2017). It has also been shown that
deep neural networks can be used to learn free-energy landscapes (Sidky and Whitmer, 2017). At the same time, methods
from statistical physics have been applied to the field of deep learning to study the thermodynamic efficiency of learning
rules (Goldt and Seifert, 2017), to explore the hypothesis space that DNNs span, make analogies between training DNNs
and spin glasses (Baity-Jesi et al., 2018; Baldassi et al., 2017), and to characterize phase transitions with respect to network
topology in terms of errors (Li and Saad, 2017). In relativistic hydrodynamics, deep learning has been shown to capture
features of non-linear evolution and has the potential to accelerate numerical simulations (Huang et al., 2018), while in
mechanics CNNs have been used to predict eigenvalues of photonic crystals (Finol et al., 2018). Deep CNNs were employed
in lensing reconstruction of the cosmic microwave background (Caldeira et al., 2018). Recently, DNNs have been used to
improve the efficiency of Monte-Carlo algorithms (Shen et al., 2018).

Deep learning has also found interesting applications in quantum physics. Various quantum phase transitions (Arai
et al., 2017; Broecker et al., 2017; Iakovlev et al., 2018; Suchsland and Wessel, 2018; van Nieuwenburg et al., 2017b) can
be detected and studied using DNNs and CNNs, including the transverse-field Ising model (Ohtsuki and Ohtsuki, 2017),
topological phases (Yoshioka et al., 2017; Zhang et al., 2017a,b) and non-invasive topological quality control (Caio et al.,
2019). DNNs found applications even in non-equilibrium many-body localization (Schindler et al., 2017; van Nieuwenburg
et al., 2017a,b; Venderley et al., 2017), and the characterization of photoexcited quantum states (Shinjo et al., 2019).
Experimentally, DNNs were recently employed in cold atoms to identify critical points (Rem et al., 2018). Representing
quantum states as DNNs (Gao and Duan, 2017; Gao et al., 2017; Levine et al., 2017; Saito and Kato, 2017) and quantum
state tomography (Torlai et al., 2018) are among some of the impressive achievements to reveal the potential of deep
learning to facilitate the study of quantum systems. Machine learning techniques involving neural networks were also
used to study quantum and fault-tolerant error correction (Baireuther et al., 2017; Breuckmann and Ni, 2017; Chamberland
and Ronagh, 2018; Davaasuren et al., 2018; Krastanov and Jiang, 2017; Maskara et al., 2018), estimate rates of coherent
and incoherent quantum processes (Greplova et al., 2017), to obtain spectra of 1/f -noise in spin-qubit devices (Zhang and
Wang, 2018), and the recognition of state and charge configurations and auto-tuning in quantum dots (Kalantre et al.,
2017). In quantum information theory, it has been shown that one can perform gate decompositions with the help of
neural nets (Swaddle et al., 2017). In lattice quantum chromodynamics, DNNs have been used to learn action parameters
in regions of parameter space where principal component analysis fails (Shanahan et al., 2018). CNNs were applied to
data from a high-energy experiment to identify particle interactions in sampling calorimeters used commonly in neutrino
physics (Aurisano et al., 2016). Last but not least, DNNs also found place in the study of quantum control (Yang et al.,
2017), and in scattering theory to learn the s-wave scattering length (Wu et al., 2018) of potentials.

9.1. Neural network basics

Neural networks (also called neural nets) are neural-inspired nonlinear models for supervised learning. As we will see,
neural nets can be viewed as natural, more powerful extensions of supervised learning methods such as linear and logistic
regression and soft-max methods.

9.1.1. The basic building block: neurons
The basic unit of a neural net is a stylized ‘‘neuron’’ i that takes a vector of d input features x = (x1, x2, . . . , xd) and

produces a scalar output ai(x). A neural network consists of many such neurons stacked into layers, with the output of
one layer serving as the input for the next (see Fig. 35). The first layer in the neural net is called the input layer, the
middle layers are often called ‘‘hidden layers’’, and the final layer is called the output layer.

The exact function ai varies depending on the type of non-linearity used in the neural network. However, in essentially
all cases ai can be decomposed into a linear operation that weights the relative importance of the various inputs, and a
non-linear transformation �i(z) which is usually the same for all neurons. The linear transformation in almost all neural
networks takes the form of a dot product with a set of neuron-specific weights w(i) = (w(i)

1 , w
(i)
2 , . . . , w

(i)
d ) followed by

re-centering with a neuron-specific bias b(i):

z(i) = w(i)
· x + b(i) = xT · w(i), (117)

where x = (1, x) and w(i) = (b(i), w(i)). In terms of z(i) and the non-linear function �i(z), we can write the full input–output
function as

ai(x) = �i(z(i)), (118)

see Fig. 35.
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Linear operation

Non-linearity 

Outputs of the input layer  
= inputs of the next hidden layer 

The output layer is often a simple classifier 
e.g., soft-max function or a linear regression



Activation Function
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Fig. 35. Basic architecture of neural networks. (A) The basic components of a neural network are stylized neurons consisting of a linear transformation
that weights the importance of various inputs, followed by a non-linear activation function. (b) Neurons are arranged into layers with the output
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Fig. 36. Possible non-linear activation functions for neurons. In modern DNNs, it has become common to use non-linear functions that do not
saturate for large inputs (bottom row) rather than saturating functions (top row).

Historically in the neural network literature, common choices of nonlinearities included step-functions (perceptrons),
sigmoids (i.e. Fermi functions), and the hyperbolic tangent. More recently, it has become more common to use rectified
linear units (ReLUs), leaky rectified linear units (leaky ReLUs), and exponential linear units (ELUs) (see Fig. 36). Different
choices of non-linearities lead to different computational and training properties for neurons. The underlying reason for
this is that we train neural nets using gradient descent based methods, see Section 4, that require us to take derivatives
of the neural input–output function with respect to the weights w(i) and the bias b(i).

Notice that the derivatives of the aforementioned non-linearities � (z) have very different properties. The derivative
of the perceptron is zero everywhere except where the input is zero. This discontinuous behavior makes it impossible to
train perceptrons using gradient descent. For this reason, until recently the most popular choice of non-linearity was the
tanh function or a sigmoid/Fermi function. However, this choice of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the activation function saturates and the derivative of the output with
respect to the weights tends to zero since @�/@z ! 0 for z � 1. Such ‘‘vanishing gradients’’ are a feature of any saturating
activation function (top row of Fig. 36), making it harder to train deep networks. In contrast, for a non-saturating activation
function such as ReLUs or ELUs, the gradients stay finite even for large inputs.

9.1.2. Layering neurons to build deep networks: network architecture
The basic idea of all neural networks is to layer neurons in a hierarchical fashion, the general structure of which is

known as the network architecture (see Fig. 35). In the simplest feed-forward networks, each neuron in the input layer
of the neurons takes the inputs x and produces an output ai(x) that depends on its current weights, see Eq. (118). The

Rectified Linear Unit Exponential Linear Unit

Train neural nets using gradient descent.

Perceptron: derivative is either zero or infinite (not suitable)
Sigmoid, Tanh: differentiable but has the drawback of saturation

ReLU, Leaky ReLU, ELU: can overcome this vanishing gradient problem.
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Network Architecture 

• The way in which neurons are layered and connected is known as 
the network architecture.

• Hidden layers: often multiple layers (deep networks) 

• Size of layer (i.e. how many nodes needed): depends on 
problem (hyperparameter) 

• Design depends on the task, the amount and type of data. Certain 
architectures are easier to train, others are better in learning 
complicated features.

• Greatly expands the representational power (expressivity) 
compared with a simple softmax or linear regression.



Universal Approximation Theorem (1989)

Neural network with a single hidden layer can approximate any 
continuous, multi-input/multi-output functions with arbitrary accuracy. 

A visual proof that neural nets can compute any function
http://neuralnetworksanddeeplearning.com/chap4.html



Training Deep Networks

• Construct a loss function:

• Use gradient descent to minimize the cost function and find the 
optimal weights and biases. 

• Neural networks contain multiple hidden layers that make taking 
the gradient computationally more difficult (backpropagation).
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outputs of the input layer are then treated as the inputs to the next hidden layer. This is usually repeated several times
until one reaches the top or output layer. The output layer is almost always a simple classifier of the form discussed in
earlier sections: a logistic regression or soft-max function in the case of categorical data (i.e. discrete labels) or a linear
regression layer in the case of continuous outputs. Thus, the whole neural network can be thought of as a complicated
nonlinear transformation of the inputs x into an output ŷ that depends on the weights and biases of all the neurons in
the input, hidden, and output layers.

The use of hidden layers greatly expands the representational power of a neural net when compared with a simple
soft-max or linear regression network. Perhaps, the most formal expression of the increased representational power
of neural networks (also called the expressivity) is the universal approximation theorem which states that a neural
network with a single hidden layer can approximate any continuous, multi-input/multi-output function with arbitrary
accuracy. The reader is strongly urged to read the beautiful graphical proof of the theorem in Chapter 4 of Nielsen’s free
online book (Nielsen, 2015). The basic idea behind the proof is that hidden neurons allow neural networks to generate
step functions with arbitrary offsets and heights. These can then be added together to approximate arbitrary functions.
The proof also makes clear that the more complicated a function, the more hidden units (and free parameters) are
needed to approximate it. Hence, the applicability of the approximation theorem to practical situations should not be
overemphasized. In condensed matter physics, a good analogy are matrix product states, which can approximate any
quantum many-body state to an arbitrary accuracy, provided the bond dimension can be increased arbitrarily – a severe
requirement not met in any useful practical implementation of the theory.

Modern neural networks generally contain multiple hidden layers (hence the ‘‘deep’’ in deep learning). There are many
ideas of why such deep architectures are favorable for learning. Increasing the number of layers increases the number
of parameters and hence the representational power of neural networks. Indeed, recent numerical experiments suggests
that as long as the number of parameters is larger than the number of data points, certain classes of neural networks can
fit arbitrarily labeled random noise samples (Zhang et al., 2016). This suggests that large neural networks of the kind used
in practice can express highly complex functions. Adding hidden layers is also thought to allow neural nets to learn more
complex features from the data. Work on convolutional networks suggests that the first few layers of a neural network
learn simple, ‘‘low-level’’ features that are then combined into higher-level, more abstract features in the deeper layers.
Other works suggest that it is computationally and algorithmically easier to train deep networks rather than shallow,
wider nets, though this is still an area of major controversy and active research (Mhaskar et al., 2016).

Choosing the exact network architecture for a neural network remains an art that requires extensive numerical
experimentation and intuition, and is often times problem-specific. Both the number of hidden layers and the number
of neurons in each layer can affect the performance of a neural network. There seems to be no single recipe for the
right architecture for a neural net that works best. However, a general rule of thumb that seems to be emerging is that
the number of parameters in the neural net should be large enough to prevent under-fitting (see theoretical discussion
in (Advani and Saxe, 2017)).

Empirically, the best architecture for a problem depends on the task, the amount and type of data that is available, and
the computational resources at one’s disposal. Certain architectures are easier to train, while others might be better at
capturing complicated dependencies in the data and learning relevant input features. Finally, there have been numerous
works that move beyond the simple deep, feed-forward neural network architectures discussed here. For example, modern
neural networks for image segmentation often incorporate ‘‘skip connections’’ that skip layers of the neural network (He
et al., 2016). This allows information to directly propagate to a hidden or output layer, bypassing intermediate layers and
often improving performance.

9.2. Training deep networks

In the previous section, we introduced the basic architecture for neural networks. Here we discuss how to efficiently
train large neural networks. Luckily, the basic procedure for training neural nets is the same as we used for training
simpler supervised learning algorithms, such as logistic and linear regression: construct a cost/loss function and then use
gradient descent to minimize the cost function and find the optimal weights and biases. Neural networks differ from
these simpler supervised procedures in that generally they contain multiple hidden layers that make taking the gradient
computationally more difficult. We will return to this in Section 9.3 which discusses the ‘‘backpropagation’’ algorithm for
computing gradients.

Like all supervised learning procedures, the first thing one must do to train a neural network is to specify a loss
function. Given a data point (xi, yi), xi 2 Rd+1, the neural network makes a prediction ŷi(w), where w are the parameters
of the neural network. Recall that in most cases, the top output layer of our neural net is either a continuous predictor
or a classifier that makes discrete (categorical) predictions. Depending on whether one wants to make continuous or
categorical predictions, one must utilize a different kind of loss function.

For continuous data, the loss functions that are commonly used to train neural networks are identical to those used
in linear regression, and include the mean squared error

E(w) =
1
n

nX

i=1

(yi � ŷi(w))2, (119)
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where n is the number of data points, and the mean-absolute error (i.e. L1 norm)

E(w) =
1
n

X

i

|yi � ŷi(w)|. (120)

The full cost function often includes additional terms that implement regularization (e.g. L1 or L2 regularizers), see
Section 6.

For categorical data, the most commonly used loss function is the cross-entropy (Eq. (76) and Eq. (81)), since the
output layer is often taken to be a logistic classifier for binary data with two types of labels, or a soft-max classifier if
there are more than two types of labels. The cross-entropy was already discussed extensively in earlier sections on logistic
regression and soft-max classifiers, see Section 7. Recall that for classification of binary data, the output of the top layer
of the neural network is the probability ŷi(w) = p(yi = 1|xi;w) that data point i is predicted to be in category 1. The
cross-entropy between the true labels yi 2 {0, 1} and the predictions is given by

E(w) = �

nX

i=1

yi log ŷi(w) + (1 � yi) log
⇥
1 � ŷi(w)

⇤
.

More generally, for categorical data, y can take on M values so that y 2 {0, 1, . . . ,M � 1}. For each datapoint i, define
a vector yim called a ‘one-hot’ vector, such that

yim =

⇢
1, if yi = m
0, otherwise.

(121)

We can also define the probability that the neural network assigns a datapoint to category m: ŷim(w) = p(yi = m|xi;w).
Then, the categorical cross-entropy is defined as

E(w) = �

nX

i=1

M�1X

m=0

yim log ŷim(w)

+ (1 � yim) log
⇥
1 � ŷim(w)

⇤
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As in linear and logistic regression, this loss function is often supplemented by additional terms that implement
regularization.

Having defined an architecture and a cost function, we must now train the model. Similar to other supervised
learning methods, we make use of gradient descent-based methods to optimize the cost function. Recall that the basic
idea of gradient descent is to update the parameters w to move in the direction of the gradient of the cost function
rwE(w). In Section 4, we discussed numerous optimizers that implement variations of stochastic gradient descent (SGD,
Nesterov, RMSProp, Adam, etc.) Most modern neural network packages, such as Keras, allow the user to specify which of
these optimizers they would like to use in order to train the neural network. Depending on the architecture, data, and
computational resources, different optimizers may work better on the problem, though vanilla SGD is a good first choice.

Finally, we note that unlike in linear and logistic regression, calculating the gradients for a neural network requires a
specialized algorithm, called Backpropagation (often abbreviated backprop) which forms the heart of any neural network
training procedure. Backpropagation has been discovered multiple times independently but was popularized for modern
neural networks in 1985 (Rumelhart and Zipser, 1985). We will turn to the backpropagation algorithm in the next section.
Before reading it, the reader is strongly encouraged to play with Notebook 11 in order to gain some intuition about how
to build a DNN in practice using the high-level Keras Python package. Notebook 11 discusses a simple example where
we build a feed-forward deep neural network for classifying hand-written digits from the MNIST dataset. Figs. 37 and 38
show the accuracy and the loss as a function of the training episodes.

9.3. The backpropagation algorithm

In the last section, we saw how to deploy a high-level package, Keras, to design and train a simple neural network. This
training procedure requires us to be able to calculate the derivative of the cost function with respect to all the parameters
of the neural network (the weights and biases of all the neurons in the input, hidden, and visible layers). A brute force
calculation is out of the question since it requires us to calculate as many gradients as parameters at each step of the
gradient descent. The backpropagation algorithm (Rumelhart and Zipser, 1985) is a clever procedure that exploits the
layered structure of neural networks to more efficiently compute gradients (for a more detailed discussion with Python
code examples see Chapter 2 of (Nielsen, 2015)).

9.3.1. Deriving and implementing the backpropagation equations
At its core, backpropagation is simply the ordinary chain rule for partial differentiation, and can be summarized using

four equations. In order to see this, we must first establish some useful notation. We will assume that there are L layers
in our network with l = 1, . . . , L indexing the layer. Denote by wl

jk the weight for the connection from the kth neuron in
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where n is the number of data points, and the mean-absolute error (i.e. L1 norm)
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Section 6.

For categorical data, the most commonly used loss function is the cross-entropy (Eq. (76) and Eq. (81)), since the
output layer is often taken to be a logistic classifier for binary data with two types of labels, or a soft-max classifier if
there are more than two types of labels. The cross-entropy was already discussed extensively in earlier sections on logistic
regression and soft-max classifiers, see Section 7. Recall that for classification of binary data, the output of the top layer
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Mean sq. error 
(linear regression)
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(binary classification)

Softmax
(multi-class classification)

all the weights and biases
in the network



Backpropagation

• Need to calculate as many gradients as parameters at each step of 
the gradient descent. 

• The backpropagation algorithm exploits the layered structure of 
neural networks to more efficiently compute gradients. 

• Systematic use of chain rule (summarized by 4 equations).

• Assume there are  layers in the network, .

• Denote by  the weight for the connection from the -th neuron in 
layer  to the -th neuron in layer  (whose bias is ).

• For feedforward network, the activation  of the -th neuron:

L l = 1,…, L
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jk k
l − 1 j l bl

j
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j j
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Fig. 37. Model accuracy of a DNN to study the MNIST problem as a function of the training epochs (see Notebook 11). Besides the input and output
layers, the DNN has four layers of size (100,400,400,50) with different nonlinearities � (z).

Fig. 38. Model loss of a DNN to study the MNIST problem as a function of the training epochs (see Notebook 11). Besides the input and output
layers, the DNN has four layers of size (100,400,400,50) with different nonlinearities � (z).

layer l� 1 to the jth neuron in layer l. We denote the bias of this neuron by blj. By construction, in a feed-forward neural
network the activation alj of the jth neuron in the lth layer can be related to the activities of the neurons in the layer l�1
by the equation

alj = �

 
X

k

wl
jka

l�1
k + blj

!
= � (zlj ), (123)

where we have defined the linear weighted sum

zlj =

X

k

wl
jka

l�1
k + blj. (124)

By definition, the cost function E depends directly on the activities of the output layer aLj . It of course also indirectly
depends on all the activities of neurons in lower layers in the neural network through iteration of Eq. (123). Let us define
the error �L

j of the jth neuron in the Lth layer as the change in cost function with respect to the weighted input zLj

�L
j =

@E
@zLj

. (125)

This definition is the first of the four backpropagation equations.
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Fig. 37. Model accuracy of a DNN to study the MNIST problem as a function of the training epochs (see Notebook 11). Besides the input and output
layers, the DNN has four layers of size (100,400,400,50) with different nonlinearities � (z).

Fig. 38. Model loss of a DNN to study the MNIST problem as a function of the training epochs (see Notebook 11). Besides the input and output
layers, the DNN has four layers of size (100,400,400,50) with different nonlinearities � (z).
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This definition is the first of the four backpropagation equations.

linear weighted sum:



Backpropagation

• The cost function  depends directly on the activities of the output 
layer , and indirectly on the activities of neurons in lower layers.

• Define the error of the -th neuron in the -th layer:

• This error can alternatively be interpreted as:

• Using chain rule:

E
aL

j

j l
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We can analogously define the error of neuron j in layer l, �l
j, as the change in the cost function w.r.t. the weighted

input zlj :

�l
j =

@E
@zlj

=
@E
@alj

� 0(zlj ), (I)

where � 0(x) denotes the derivative of the non-linearity � (·) with respect to its input evaluated at x. Notice that the error
function �l

j can also be interpreted as the partial derivative of the cost function with respect to the bias blj, since

�l
j =

@E
@zlj

=
@E
@blj

@blj
@zlj

=
@E
@blj

, (II)

where in the last line we have used the fact that @blj/@z
l
j = 1, cf. Eq. (124). This is the second of the four backpropagation

equations.
We now derive the final two backpropagation equations using the chain rule. Since the error depends on neurons in

layer l only through the activation of neurons in the subsequent layer l + 1, we can use the chain rule to write

�l
j =

@E
@zlj

=

X

k

@E
@zl+1

k

@zl+1
k

@zlj

=

X

k

�l+1
k

@zl+1
k

@zlj

=

 
X

k

�l+1
k wl+1

kj

!
� 0(zlj ). (III)

This is the third backpropagation equation. The final equation can be derived by differentiating of the cost function with
respect to the weight wl

jk as

@E
@wl

jk
=

@E
@zlj

@zlj
@wl

jk
= �l

ja
l�1
k (IV)

Together, Eqs. (I), (II), (III), and (IV) define the four backpropagation equations relating the gradients of the activations
of various neurons alj, the weighted inputs zlj =

P
k wl

jka
l�1
k + blj, and the errors �l

j. These equations can be combined into
a simple, computationally efficient algorithm to calculate the gradient with respect to all parameters (Nielsen, 2015).

The Backpropagation Algorithm

1. Activation at input layer: calculate the activations a1j of all the neurons in the input layer.
2. Feedforward: starting with the first layer, exploit the feed-forward architecture through Eq. (123) to compute zl

and al for each subsequent layer.
3. Error at top layer: calculate the error of the top layer using Eq. (I). This requires to know the expression for the

derivative of both the cost function E(w) = E(aL) and the activation function � (z).
4. ‘‘Backpropagate’’ the error: use Eq. (III) to propagate the error backwards and calculate �l

j for all layers.
5. Calculate gradient: use Eqs. (II) and (IV) to calculate @E

@blj
and @E

@wl
jk
.

We can now see where the name backpropagation comes from. The algorithm consists of a forward pass from the
bottom layer to the top layer where one calculates the weighted inputs and activations of all the neurons. One then
backpropagates the error starting with the top layer down to the input layer and uses these errors to calculate the
desired gradients. This description makes clear the incredible utility and computational efficiency of the backpropagation
algorithm. We can calculate all the derivatives using a single ‘‘forward’’ and ‘‘backward’’ pass of the neural network. This
computational efficiency is crucial since we must calculate the gradient with respect to all parameters of the neural net at
each step of gradient descent. These basic ideas also underly almost all modern automatic differentiation packages such
as Autograd (Pytorch).

9.3.2. Computing gradients in deep networks: what can go wrong with backprop?
Armed with backpropagation and gradient descent, it seems like it should be straightforward to train any neural

network. However, until fairly recently it was widely believed that training deep networks was an extremely difficult task.
One reason for this was that even with backpropagation, gradient descent on large networks is extremely computationally
expensive. However, the great advances in computational hardware (and the widespread use of GPUs) has made this a
much less vexing problem than even a decade ago. It is hard to understate the impact these advances in computing have
had on the practical utility of neural networks.
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bottom layer to the top layer where one calculates the weighted inputs and activations of all the neurons. One then
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each step of gradient descent. These basic ideas also underly almost all modern automatic differentiation packages such
as Autograd (Pytorch).

9.3.2. Computing gradients in deep networks: what can go wrong with backprop?
Armed with backpropagation and gradient descent, it seems like it should be straightforward to train any neural

network. However, until fairly recently it was widely believed that training deep networks was an extremely difficult task.
One reason for this was that even with backpropagation, gradient descent on large networks is extremely computationally
expensive. However, the great advances in computational hardware (and the widespread use of GPUs) has made this a
much less vexing problem than even a decade ago. It is hard to understate the impact these advances in computing have
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We can now see where the name backpropagation comes from. The algorithm consists of a forward pass from the
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One reason for this was that even with backpropagation, gradient descent on large networks is extremely computationally
expensive. However, the great advances in computational hardware (and the widespread use of GPUs) has made this a
much less vexing problem than even a decade ago. It is hard to understate the impact these advances in computing have
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We can now see where the name backpropagation comes from. The algorithm consists of a forward pass from the
bottom layer to the top layer where one calculates the weighted inputs and activations of all the neurons. One then
backpropagates the error starting with the top layer down to the input layer and uses these errors to calculate the
desired gradients. This description makes clear the incredible utility and computational efficiency of the backpropagation
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One reason for this was that even with backpropagation, gradient descent on large networks is extremely computationally
expensive. However, the great advances in computational hardware (and the widespread use of GPUs) has made this a
much less vexing problem than even a decade ago. It is hard to understate the impact these advances in computing have
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network. However, until fairly recently it was widely believed that training deep networks was an extremely difficult task.
One reason for this was that even with backpropagation, gradient descent on large networks is extremely computationally
expensive. However, the great advances in computational hardware (and the widespread use of GPUs) has made this a
much less vexing problem than even a decade ago. It is hard to understate the impact these advances in computing have
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Problem of Vanishing or Exploding Gradients

• Illustrate this problem with a network with 1 neuron per layer

• Backpropagating the error (assuming equal weights):

• The errors and their gradients vanish/blow-up unless .

• Avoid vanishing and explosion of gradients by using appropriate 
initialization of weights and regularization (e.g. gradient clipping, 
batch normalization), and using non-linearities that do not saturate. 

• Finding ways to solve this problem is an active area of research.
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On a more technical and mathematical note, another problem that occurs in deep networks, which transmit infor-
mation through many layers, is that gradients can vanish or explode. This is, appropriately, known as the problem of
vanishing or exploding gradients. This problem is especially pronounced in neural networks that try to capture long-range
dependencies, such as Recurrent Neural Networks for sequential data. We can illustrate this problem by considering a
simple network with one neuron in each layer. We further assume that all weights are equal, and denote them by w. The
behavior of the backpropagation equations for such a network can be inferred from repeatedly using Eq. (III):

�1
j = �L

j

L�1Y

j=0

w� 0(zj) = �L
j (w)L

L�1Y

j=0

� 0(zj), (126)

where �L
j is the error in the Lth topmost layer, and (w)L is the weight to the power L. Let us now also assume that the

magnitude � 0(zj) is fairly constant and we can approximate � 0(zj) ⇡ � 0

0. In this case, notice that for large L, the error
�1

j has very different behavior depending on the value of w� 0

0. If w� 0

0 > 1, the errors and the gradient blow up. On the
other hand, if w� 0

0 < 1 the errors and gradients vanish. Only when the weights satisfy w� 0

0 ⇡ 1 and the neurons are not
saturated will the gradient stay well behaved for deep networks.

This basic behavior holds true even in more complicated networks. Rather than considering a single weight, we can
ask about the eigenvalues (or singular values) of the weight matrices wl

jk. In order for the gradients to be finite for deep
networks, we need these eigenvalues to stay near unity even after many gradient descent steps. In modern feedforward
and ReLU neural networks, this is achieved by initializing the weights for the gradient descent in clever ways and using
non-linearities that do not saturate, such as ReLUs (recall that for saturating functions, � 0 ! 0, which will cause the
gradient to vanish). Proper initialization and regularization schemes such as gradient clipping (cutting-off gradients with
very large values), and batch normalization also help mitigate the vanishing and exploding gradient problem.

9.4. Regularizing neural networks and other practical considerations

DNNs, like all supervised learning algorithms, must navigate the bias–variance tradeoff. Regularization techniques play
an important role in ensuring that DNNs generalize well to new data. The last five years have seen a wealth of new
specialized regularization techniques for DNNs beyond the simple L1 and L2 penalties discussed in the context of linear and
logistic regression, see Sections 6 and 7. These new techniques include Dropout and Batch Normalization. In addition to
these specialized regularization techniques, large DNNs seem especially well-suited to implicit regularization that already
takes place in the Stochastic Gradient Descent (SGD) (Wilson et al., 2017), cf. Section 4. The implicit stochasticity and
local nature of SGD often prevent overfitting of spurious correlations in the training data, especially when combined with
techniques such as Early Stopping. In this section, we give a brief overview of these regularization techniques.

9.4.1. Implicit regularization using SGD: initialization, hyper-parameter tuning, and Early Stopping
The most commonly employed and effective optimizer for training neural networks is SGD (see Section 4 for other

alternatives). SGD acts as an implicit regularizer by introducing stochasticity (from the use of mini-batches) that prevents
overfitting. In order to achieve good performance, it is important that the weight initialization is chosen randomly, in
order to break any leftover symmetries. One common choice is drawing the weights from a Gaussian centered around
zero with some variance that scales inversely with number of inputs to the neuron (He et al., 2015; Sutskever et al., 2013).
Since SGD is a local procedure, as networks get deeper, choosing a good weight initialization becomes increasingly important
to ensure that the gradients are well behaved. Choosing an initialization with a variance that is too large or too small will
cause gradients to vanish and the network to train poorly — even a factor of 2 can make a huge difference in practice (He
et al., 2015). For this reason, it is important to experiment with different variances.

The second important thing is to appropriately choose the learning rate or step-size by searching over five logarithmic
grid points (Wilson et al., 2017). If the best performance occurs at the edge of the grid, repeat this procedure until the
optimal learning rate is in the middle of the grid parameters. Finally, it is common to center or whiten the input data
(just as we did for linear and logistic regression).

Another important form of regularization that is often employed in practice is Early Stopping. The idea of Early Stopping
is to divide the training data into two portions, the dataset we train on, and a smaller validation set that serves as a proxy
for out-of-sample performance on the test set. As we train the model, we plot both the training error and the validation
error. We expect the training error to continuously decrease during training. However, the validation error will eventually
increase due to overfitting. The basic idea of early stopping is to halt the training procedure when the validation error
starts to rise. This Early Stopping procedure ensures that we stop the training and avoid fitting sample specific features
in the data. Early Stopping is a widely used essential tool in the deep learning regularization toolbox.

9.4.2. Dropout
Another important regularization schemed that has been widely adopted in the neural networks literature is

Dropout (Srivastava et al., 2014). The basic idea of Dropout is to prevent overfitting by reducing spurious correlations
between neurons within the network by introducing a randomization procedure similar to that underlying ensemble
models such as Bagging. Recall that the basic idea behind ensemble methods is to train an ensemble of models that are



Phases of Weights

• Trainable vs non-trainable depends 
on weight initialization.

• Chaotic regime: network not trainable 
(explosion of gradients), system is 
unstable.

• Ordered regime: potentially vanishing 
gradients.

• Training near phase boundary most 
efficient.
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Figure 1
Deep neural expressivity through transient chaos. (a) A dynamical phase transition between ordered and
chaotic signal propagation in random deep neural networks as a function of the weight variance σ 2

w and bias
variance σ 2

b (29, 31). Such a phase transition holds for any smooth, odd saturating nonlinearity with !nite
slope at the origin. Results are shown for φ(x) = tanh x. (b) An example of the propagation of a simple
manifold through multiple layers in the chaotic regime. (c) An example of a decision boundary or a
codimension 1 manifold M in input space. Eigenvalues associated with the diagonalization of a normalized
quadratic approximation to the manifold at a point x∗ yields principal curvatures of M at x∗ quantifying
departures away from the tangent plane Tx∗M. A dynamic mean-!eld theory for the propagation of these
principal curvatures was developed in Reference 29. This theory revealed that the principal curvatures of
decision boundaries in input space associated with "at boundaries in output space grow exponentially with
depth in the chaotic regime in Reference 29. Abbreviation: PCA, principal components analysis.

folding, leading to an exponential divergence of nearby inputs without the norm of inputs blowing
up, just like chaotic propagation in recurrent dynamical systemswith positive Lyapunov exponents.
We review this phase transition in more detail in Section 4.

In this chaotic regime, global measures of the length and integrated extrinsic curvature of
simple one-dimensional input manifolds typically grow exponentially with depth for random net-
works (29; Figure 1b), whereas the corresponding measure of length can grow at most as the
square root of the width in a shallow network, no matter how one chooses the weights. This
then demonstrates the result that random deep networks cannot be approximated by shallow net-
works unless they have exponentially many more neurons. Furthermore, in this chaotic regime,
"at decision boundaries in the output space correspond to decision boundaries in input space with
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Figure 3
Signal propagation predicts trainability. Each panel shows training accuracy from perfect (red) to random chance (black) as the
hyperparameters of a model are varied over a two-dimensional slice. White lines show mean-!eld predictions for quantities that
determine trainability in each case. In general, we observe excellent agreement over a wide range of architectures. (a) Fully connected
network compared with the depth scale for signal propagation. (b) A residual network compared with a curve of constant gradient norm.
(c) Convolutional network with the depth scale for signal propagation. (d–e) Recurrent neural networks with the timescale for signal
propagation. ( f ) Fully connected networks with batch normalization with the depth scale for gradient explosion. See Reference 31 for
more details.

Fully connected networks with !xed points of the form in Equation 8 exhibit a phase transition
as one increases σ 2

w for !xed σ 2
b for smooth bounded nonlinearities φ (see also Figure 1a). For

small σ 2
w, a !xed point with c∗ = 1 is stable (implying all nearby points contract to a single point),

whereas for large σ 2
w, this !xed point is unstable and another !xed point with c∗ < 1 becomes stable

(implying nearby points chaotically decorrelate to a nonzero angle, e.g., as in Figure 1b). At the
critical transition point, the depth scales ξ diverge, implying that forward propagation of signals
retains a deep memory trace of the initial input geometry.

Intriguingly, this diverging depth scale for information propagation of input geometry coin-
cides with the ability to train extremely deep, critical networks (31) (Figure 3). Furthermore, away
from criticality, the depth scale of reliable forward information propagation controls the depth
over which neural networks can be trained. This critical phase transition, diverging depth scale,
and deep trainability at criticality have been observed not only in fully connected networks (31)
but also in convolutional networks (63), autoencoders (64), and recurrent networks (65, 66).When

512 Bahri et al.

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

20
.1

1:
50

1-
52

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 2

60
0:

6c
44

:3
97

f:f
fa

3:
86

:e
a5

3:
76

1e
:4

7a
0 

on
 0

2/
23

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Regularizing Neural Networks



Implicit Regularization of SGD
• Initialization: random weights (to break leftover symmetries), 

Gaussianly distributed (experiment with different variances).

• Hyperparameter tuning: search for optimal values on a log scale.

• Early stopping: divide training data into a training set (larger) and 
a validation set (smaller)



Dropout
• Prevent overfitting by reducing spurious correlations among 

neurons in network. Similar idea as in bagging in ensemble 
methods, but without using different datasets. 

• Randomly dropping out neurons (and their connections) during 
each step of training. Gradient descent only performed on this 
subset of neurons. Predictions made with all neurons active.P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 57

Fig. 39. Dropout. During the training procedure neurons are randomly ‘‘dropped out’’ of the neural network with some probability p giving rise
to a thinned network. This prevents overfitting by reducing correlations among neurons and reducing the variance in a method similar in spirit to
ensemble methods.

created using a randomization procedure to ensure that the members of the ensemble are uncorrelated, see Section 8.
This reduces the variance of statistical predictions without creating too much additional bias.

In the context of neural networks, it is extremely costly to train an ensemble of networks, both from the point of view of
the amount of data needed, as well as computational resources and parameter tuning required. Dropout circumnavigates
these problems by randomly dropping out neurons (along with their connections) from the neural network during each
step of the training (see Fig. 39). Typically, for each mini-batch in the gradient descent step, a neuron is dropped from the
neural network with a probability p. The gradient descent step is then performed only on the weights of the ‘‘thinned’’
network of individual predictors.

Since during training, on average weights are only present a fraction p of the time, predictions are made by reweighing
the weights by p: wtest = pwtrain. The learned weights can be viewed as some ‘‘average’’ weight over all possible thinned
neural network. This averaging of weights is similar in spirit to the Bagging procedure discussed in the context of ensemble
models, see Section 8.

9.4.3. Batch Normalization
Batch Normalization is a regularization scheme that has been quickly adopted by the neural network community since

its introduction in 2015 (Ioffe and Szegedy, 2015). The basic inspiration behind Batch Normalization is the long-known
observation that training in neural networks works best when the inputs are centered around zero with respect to the
bias. The reason for this is that it prevents neurons from saturating and gradients from vanishing in deep nets. In the
absence of such centering, changes in parameters in lower layers can give rise to saturation effects in higher layers, and
vanishing gradients. The idea of Batch Normalization is to introduce additional new ‘‘BatchNorm’’ layers that standardize
the inputs by the mean and variance of the mini-batch.

Consider a layer l with d neurons whose inputs are (zl1, . . . , z
l
d). We standardize each dimension so that

zlk �! ẑ lk =
zlk � E[zlk]q

Var[zlk]
, (127)

where the mean and variance are taken over all samples in the mini-batch. One problem with this procedure is that it
may change the representational power of the neural network. For example, for tanh non-linearities, it may force the
network to live purely in the linear regime around z = 0. Since non-linearities are crucial to the representational power
of DNNs, this could dramatically alter the power of the DNN.

For this reason, one introduces two new parameters � l
k and � l

k for each neuron that can additionally shift and scale
the normalized input

ẑ lk �! ẑlk = � l
kẑ

l
k + � l

k. (128)

One can think of Eqs. (127) and (128) as adding new extra layers ẑlk in the deep net architecture. Hence, the new
parameters � l

k and � l
k can be learned just like the weights and biases using backpropagation (since this is just an extra layer

for the chain rule). We initialize the neural network so that at the beginning of training the inputs are being standardized.
Backpropagation then adjusts � and � during training.

In practice, Batch Normalization considerably improves the learning speed by preventing gradients from vanishing.
However, it also seems to serve as a powerful regularizer for reasons that are not fully understood. One plausible
explanation is that in batch normalization, the gradient for a sample depends not only on the sample itself but also on

weights are present only 
a fraction p of the time,

rescale weights:

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 57

Fig. 39. Dropout. During the training procedure neurons are randomly ‘‘dropped out’’ of the neural network with some probability p giving rise
to a thinned network. This prevents overfitting by reducing correlations among neurons and reducing the variance in a method similar in spirit to
ensemble methods.

created using a randomization procedure to ensure that the members of the ensemble are uncorrelated, see Section 8.
This reduces the variance of statistical predictions without creating too much additional bias.

In the context of neural networks, it is extremely costly to train an ensemble of networks, both from the point of view of
the amount of data needed, as well as computational resources and parameter tuning required. Dropout circumnavigates
these problems by randomly dropping out neurons (along with their connections) from the neural network during each
step of the training (see Fig. 39). Typically, for each mini-batch in the gradient descent step, a neuron is dropped from the
neural network with a probability p. The gradient descent step is then performed only on the weights of the ‘‘thinned’’
network of individual predictors.

Since during training, on average weights are only present a fraction p of the time, predictions are made by reweighing
the weights by p: wtest = pwtrain. The learned weights can be viewed as some ‘‘average’’ weight over all possible thinned
neural network. This averaging of weights is similar in spirit to the Bagging procedure discussed in the context of ensemble
models, see Section 8.

9.4.3. Batch Normalization
Batch Normalization is a regularization scheme that has been quickly adopted by the neural network community since

its introduction in 2015 (Ioffe and Szegedy, 2015). The basic inspiration behind Batch Normalization is the long-known
observation that training in neural networks works best when the inputs are centered around zero with respect to the
bias. The reason for this is that it prevents neurons from saturating and gradients from vanishing in deep nets. In the
absence of such centering, changes in parameters in lower layers can give rise to saturation effects in higher layers, and
vanishing gradients. The idea of Batch Normalization is to introduce additional new ‘‘BatchNorm’’ layers that standardize
the inputs by the mean and variance of the mini-batch.

Consider a layer l with d neurons whose inputs are (zl1, . . . , z
l
d). We standardize each dimension so that

zlk �! ẑ lk =
zlk � E[zlk]q

Var[zlk]
, (127)

where the mean and variance are taken over all samples in the mini-batch. One problem with this procedure is that it
may change the representational power of the neural network. For example, for tanh non-linearities, it may force the
network to live purely in the linear regime around z = 0. Since non-linearities are crucial to the representational power
of DNNs, this could dramatically alter the power of the DNN.

For this reason, one introduces two new parameters � l
k and � l

k for each neuron that can additionally shift and scale
the normalized input

ẑ lk �! ẑlk = � l
kẑ

l
k + � l

k. (128)

One can think of Eqs. (127) and (128) as adding new extra layers ẑlk in the deep net architecture. Hence, the new
parameters � l

k and � l
k can be learned just like the weights and biases using backpropagation (since this is just an extra layer

for the chain rule). We initialize the neural network so that at the beginning of training the inputs are being standardized.
Backpropagation then adjusts � and � during training.

In practice, Batch Normalization considerably improves the learning speed by preventing gradients from vanishing.
However, it also seems to serve as a powerful regularizer for reasons that are not fully understood. One plausible
explanation is that in batch normalization, the gradient for a sample depends not only on the sample itself but also on



Batch Normalization

• Observation: training works best when inputs are centered around 
zero with respect to bias (wx+b) for activation like tanh, sigmoid: 

• Batch Normalization: additional layers which standardize inputs by 
the mean and variance of the mini-batch.

Ioffe, Szegedy 1502.03167 (~17000 citations)
c.f. the Higgs paper (~11000 citations); AdS/CFT (~15000 citations) 
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Fig. 35. Basic architecture of neural networks. (A) The basic components of a neural network are stylized neurons consisting of a linear transformation
that weights the importance of various inputs, followed by a non-linear activation function. (b) Neurons are arranged into layers with the output
of one layer serving as the input to the next layer.

Fig. 36. Possible non-linear activation functions for neurons. In modern DNNs, it has become common to use non-linear functions that do not
saturate for large inputs (bottom row) rather than saturating functions (top row).

Historically in the neural network literature, common choices of nonlinearities included step-functions (perceptrons),
sigmoids (i.e. Fermi functions), and the hyperbolic tangent. More recently, it has become more common to use rectified
linear units (ReLUs), leaky rectified linear units (leaky ReLUs), and exponential linear units (ELUs) (see Fig. 36). Different
choices of non-linearities lead to different computational and training properties for neurons. The underlying reason for
this is that we train neural nets using gradient descent based methods, see Section 4, that require us to take derivatives
of the neural input–output function with respect to the weights w(i) and the bias b(i).

Notice that the derivatives of the aforementioned non-linearities � (z) have very different properties. The derivative
of the perceptron is zero everywhere except where the input is zero. This discontinuous behavior makes it impossible to
train perceptrons using gradient descent. For this reason, until recently the most popular choice of non-linearity was the
tanh function or a sigmoid/Fermi function. However, this choice of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the activation function saturates and the derivative of the output with
respect to the weights tends to zero since @�/@z ! 0 for z � 1. Such ‘‘vanishing gradients’’ are a feature of any saturating
activation function (top row of Fig. 36), making it harder to train deep networks. In contrast, for a non-saturating activation
function such as ReLUs or ELUs, the gradients stay finite even for large inputs.

9.1.2. Layering neurons to build deep networks: network architecture
The basic idea of all neural networks is to layer neurons in a hierarchical fashion, the general structure of which is

known as the network architecture (see Fig. 35). In the simplest feed-forward networks, each neuron in the input layer
of the neurons takes the inputs x and produces an output ai(x) that depends on its current weights, see Eq. (118). The

large gradients

avoid such points



Batch Normalization
• Standardize inputs:

• Scale and shift inputs with learnable parameters: 

• Initialize the NN with standard inputs at the beginning of training. 
Backpropagation then adjusts γ and β during training. 

• Advantage: improves learning speed, acts as a regularizer. 
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Fig. 39. Dropout. During the training procedure neurons are randomly ‘‘dropped out’’ of the neural network with some probability p giving rise
to a thinned network. This prevents overfitting by reducing correlations among neurons and reducing the variance in a method similar in spirit to
ensemble methods.

created using a randomization procedure to ensure that the members of the ensemble are uncorrelated, see Section 8.
This reduces the variance of statistical predictions without creating too much additional bias.

In the context of neural networks, it is extremely costly to train an ensemble of networks, both from the point of view of
the amount of data needed, as well as computational resources and parameter tuning required. Dropout circumnavigates
these problems by randomly dropping out neurons (along with their connections) from the neural network during each
step of the training (see Fig. 39). Typically, for each mini-batch in the gradient descent step, a neuron is dropped from the
neural network with a probability p. The gradient descent step is then performed only on the weights of the ‘‘thinned’’
network of individual predictors.

Since during training, on average weights are only present a fraction p of the time, predictions are made by reweighing
the weights by p: wtest = pwtrain. The learned weights can be viewed as some ‘‘average’’ weight over all possible thinned
neural network. This averaging of weights is similar in spirit to the Bagging procedure discussed in the context of ensemble
models, see Section 8.

9.4.3. Batch Normalization
Batch Normalization is a regularization scheme that has been quickly adopted by the neural network community since

its introduction in 2015 (Ioffe and Szegedy, 2015). The basic inspiration behind Batch Normalization is the long-known
observation that training in neural networks works best when the inputs are centered around zero with respect to the
bias. The reason for this is that it prevents neurons from saturating and gradients from vanishing in deep nets. In the
absence of such centering, changes in parameters in lower layers can give rise to saturation effects in higher layers, and
vanishing gradients. The idea of Batch Normalization is to introduce additional new ‘‘BatchNorm’’ layers that standardize
the inputs by the mean and variance of the mini-batch.

Consider a layer l with d neurons whose inputs are (zl1, . . . , z
l
d). We standardize each dimension so that

zlk �! ẑ lk =
zlk � E[zlk]q

Var[zlk]
, (127)

where the mean and variance are taken over all samples in the mini-batch. One problem with this procedure is that it
may change the representational power of the neural network. For example, for tanh non-linearities, it may force the
network to live purely in the linear regime around z = 0. Since non-linearities are crucial to the representational power
of DNNs, this could dramatically alter the power of the DNN.

For this reason, one introduces two new parameters � l
k and � l

k for each neuron that can additionally shift and scale
the normalized input

ẑ lk �! ẑlk = � l
kẑ

l
k + � l

k. (128)

One can think of Eqs. (127) and (128) as adding new extra layers ẑlk in the deep net architecture. Hence, the new
parameters � l

k and � l
k can be learned just like the weights and biases using backpropagation (since this is just an extra layer

for the chain rule). We initialize the neural network so that at the beginning of training the inputs are being standardized.
Backpropagation then adjusts � and � during training.

In practice, Batch Normalization considerably improves the learning speed by preventing gradients from vanishing.
However, it also seems to serve as a powerful regularizer for reasons that are not fully understood. One plausible
explanation is that in batch normalization, the gradient for a sample depends not only on the sample itself but also on
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Fig. 39. Dropout. During the training procedure neurons are randomly ‘‘dropped out’’ of the neural network with some probability p giving rise
to a thinned network. This prevents overfitting by reducing correlations among neurons and reducing the variance in a method similar in spirit to
ensemble methods.

created using a randomization procedure to ensure that the members of the ensemble are uncorrelated, see Section 8.
This reduces the variance of statistical predictions without creating too much additional bias.

In the context of neural networks, it is extremely costly to train an ensemble of networks, both from the point of view of
the amount of data needed, as well as computational resources and parameter tuning required. Dropout circumnavigates
these problems by randomly dropping out neurons (along with their connections) from the neural network during each
step of the training (see Fig. 39). Typically, for each mini-batch in the gradient descent step, a neuron is dropped from the
neural network with a probability p. The gradient descent step is then performed only on the weights of the ‘‘thinned’’
network of individual predictors.

Since during training, on average weights are only present a fraction p of the time, predictions are made by reweighing
the weights by p: wtest = pwtrain. The learned weights can be viewed as some ‘‘average’’ weight over all possible thinned
neural network. This averaging of weights is similar in spirit to the Bagging procedure discussed in the context of ensemble
models, see Section 8.

9.4.3. Batch Normalization
Batch Normalization is a regularization scheme that has been quickly adopted by the neural network community since

its introduction in 2015 (Ioffe and Szegedy, 2015). The basic inspiration behind Batch Normalization is the long-known
observation that training in neural networks works best when the inputs are centered around zero with respect to the
bias. The reason for this is that it prevents neurons from saturating and gradients from vanishing in deep nets. In the
absence of such centering, changes in parameters in lower layers can give rise to saturation effects in higher layers, and
vanishing gradients. The idea of Batch Normalization is to introduce additional new ‘‘BatchNorm’’ layers that standardize
the inputs by the mean and variance of the mini-batch.

Consider a layer l with d neurons whose inputs are (zl1, . . . , z
l
d). We standardize each dimension so that

zlk �! ẑ lk =
zlk � E[zlk]q

Var[zlk]
, (127)

where the mean and variance are taken over all samples in the mini-batch. One problem with this procedure is that it
may change the representational power of the neural network. For example, for tanh non-linearities, it may force the
network to live purely in the linear regime around z = 0. Since non-linearities are crucial to the representational power
of DNNs, this could dramatically alter the power of the DNN.

For this reason, one introduces two new parameters � l
k and � l

k for each neuron that can additionally shift and scale
the normalized input

ẑ lk �! ẑlk = � l
kẑ

l
k + � l

k. (128)

One can think of Eqs. (127) and (128) as adding new extra layers ẑlk in the deep net architecture. Hence, the new
parameters � l

k and � l
k can be learned just like the weights and biases using backpropagation (since this is just an extra layer

for the chain rule). We initialize the neural network so that at the beginning of training the inputs are being standardized.
Backpropagation then adjusts � and � during training.

In practice, Batch Normalization considerably improves the learning speed by preventing gradients from vanishing.
However, it also seems to serve as a powerful regularizer for reasons that are not fully understood. One plausible
explanation is that in batch normalization, the gradient for a sample depends not only on the sample itself but also on
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Fig. 35. Basic architecture of neural networks. (A) The basic components of a neural network are stylized neurons consisting of a linear transformation
that weights the importance of various inputs, followed by a non-linear activation function. (b) Neurons are arranged into layers with the output
of one layer serving as the input to the next layer.

Fig. 36. Possible non-linear activation functions for neurons. In modern DNNs, it has become common to use non-linear functions that do not
saturate for large inputs (bottom row) rather than saturating functions (top row).

Historically in the neural network literature, common choices of nonlinearities included step-functions (perceptrons),
sigmoids (i.e. Fermi functions), and the hyperbolic tangent. More recently, it has become more common to use rectified
linear units (ReLUs), leaky rectified linear units (leaky ReLUs), and exponential linear units (ELUs) (see Fig. 36). Different
choices of non-linearities lead to different computational and training properties for neurons. The underlying reason for
this is that we train neural nets using gradient descent based methods, see Section 4, that require us to take derivatives
of the neural input–output function with respect to the weights w(i) and the bias b(i).

Notice that the derivatives of the aforementioned non-linearities � (z) have very different properties. The derivative
of the perceptron is zero everywhere except where the input is zero. This discontinuous behavior makes it impossible to
train perceptrons using gradient descent. For this reason, until recently the most popular choice of non-linearity was the
tanh function or a sigmoid/Fermi function. However, this choice of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the activation function saturates and the derivative of the output with
respect to the weights tends to zero since @�/@z ! 0 for z � 1. Such ‘‘vanishing gradients’’ are a feature of any saturating
activation function (top row of Fig. 36), making it harder to train deep networks. In contrast, for a non-saturating activation
function such as ReLUs or ELUs, the gradients stay finite even for large inputs.

9.1.2. Layering neurons to build deep networks: network architecture
The basic idea of all neural networks is to layer neurons in a hierarchical fashion, the general structure of which is

known as the network architecture (see Fig. 35). In the simplest feed-forward networks, each neuron in the input layer
of the neurons takes the inputs x and produces an output ai(x) that depends on its current weights, see Eq. (118). The

average and variance
over all samples in 
mini-batch in layer l

Keep this info. A drawback is that it 
forces the network to live purely in 

the linear region around z = 0



Deep Learning Packages

• Kersas: High-level framework, less control over the operations in 
between the layers.

• TensorFlow (supported by Google): construct data flow graphs with 
nodes (activations) and edges (data array).

• Pytorch: controls over the inter- and intra-layer operations w/o the 
need to introduce computational graphs

http://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB11_CIX-DNN_mnist_Keras.html

http://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB12_CIX-DNN_ising_TFlow.html

http://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB13_CIX-DNN_susy_Pytorch.html
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Fig. 40. Grid search results for the test set accuracy of the DNN for the SUSY problem as a function of the learning rate and the size of the dataset.
The data used includes all high- and low-level features.

Fig. 41. Grid search results for the test set accuracy (top) and the critical set accuracy (bottom) of the DNN for the Ising classification problem as
a function of the learning rate and the number of hidden neurons.
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all the properties of the mini-batch. Since a single sample can occur in different mini-batches, this introduces additional
randomness into the training procedure which seems to help regularize training.

9.5. Deep neural networks in practice: examples

Now that we have gained sufficient high-level background knowledge about deep neural nets, let us discuss how to
use them in practice.

9.5.1. Deep learning packages
In Notebook 11, we demonstrated that the numerical implementation of DNNs is greatly facilitated by open source

python packages, such as Keras, TensorFlow, Pytorch, and others. The complexity and learning curves for these packages
differ, depending on the user’s level of familiarity with Python. The reader should keep mind that there are DNN packages
written in other languages, such as Caffe which uses C++, but we do not discuss them in this review for brevity.

Keras is a high-level framework which does not require any knowledge about the inner workings of the underlying
deep learning algorithms. Coding DNNs in Keras is particularly simple, see Notebook 11, and allows one to quickly
grasp the big picture behind the theoretical concepts which we introduced above. However, for advanced applications,
which may require more direct control over the operations in between the layers, Keras’ high-level design may turn out
insufficient.

If one opens up the Keras black box, one will find that it wraps the functionality of another package — TensorFlow.11
Over the last years, TensorFlow, which is supported by Google, has been gaining popularity and has become the
preferred library for deep learning. It is frequently used in Kaggle competitions, university classes, and industry. In
TensorFlow one constructs data flow graphs, the nodes of which represent mathematical operations, while the edges
encode multidimensional tensors (data arrays). A deep neural net can then be thought of as a graph with a particular
architecture and connectivity. One needs to understand this concept well before one can truly unleash TensorFlow’s full
potential. The learning curve can sometimes be rather steep for TensorFlow beginners, and requires a certain degree of
perseverance and devoted time to internalize the underlying ideas.

There are, however, many other open source packages which allow for control over the inter- and intra-layer
operations, without the need to introduce computational graphs. Such an example is Pytorch, which offers libraries for
automatic differentiation of tensors at GPU speed. As we discussed above, manipulating neural nets boils down to fast
array multiplication and contraction operations and, therefore, the torch.nn library often does the job of providing
enough access and controllability to manipulate the linear algebra operations underlying deep neural nets.

For the benefit of the reader, we have prepared Jupyter notebooks for DNNs using all three packages for the deep
learning problems we discuss below. We invite the reader to carefully examine the differences in the code which should
help them decide on which package they prefer to use.

9.5.2. Approaching the learning problem
Let us now analyze a typical procedure for using neural networks to solve supervised learning problems. As can be

seen already from the code snippets in Notebook 11, constructing a deep neural network to solve ML problems is a
multiple-stage process. Generally, one can identify a set of key steps:

1. Collect and pre-process the data.
2. Define the model and its architecture.
3. Choose the cost function and the optimizer.
4. Train the model.
5. Evaluate and study the model performance on the test data.
6. Use the validation data to adjust the hyperparameters (and, if necessary, network architecture) to optimize

performance for the specific dataset.

At this point a few remarks are in order. While we treat Step 1 above as consisting mainly of loading and reshaping a
dataset prepared ahead of time, we emphasize that obtaining a sufficient amount of data is a typical challenge in many
applications. Oftentimes insufficient data serves as a major bottleneck on the ultimate performance of DNNs. In such cases
one can consider data augmentation, i.e. distorting data samples from the existing dataset in some way to enhance size
the dataset. Obviously, if one knows how to do this, one already has partial information about the important features in
the data.

One of the first questions we are typically faced with is how to determine the sizes of the training and test datasets.
The MNIST dataset, which has 10 classification categories, uses 80% of the available data for training and 20% for testing.
On the other hand, the ImageNet data which has 1000 categories is split 50% � 50%. As a rule of thumb, the more
classification categories there are in the task, the closer the sizes of the training and test datasets should be in order
to prevent overfitting. Once the size of the training set is fixed, it is common to reserve 20% of it for validation, which is
used to fine-tune the hyperparameters of the model.

11 While Keras can also be used with a Theano backend, we do not discuss this here since Theano support has been discontinued.
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Experiment with Pytorch in Notebook 13

Adjust hyperparameters e.g. learning 
rate and training set size. 

Optimal performance at the edge 
of the grid, extend the grid size 

to obtain better results.



Summary

• Feedforward neural networks

• Backpropagation

• Implementation of neural networks with Keras

• Regularization 


