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Lecture 11: Convolutional Neural Networks



Recap of Lecture 10

e Feedforward neural networks
e Backpropagation
* Regularization

References: Deep Learning Book, 1803.08823



Outline for today

e Convolutional neural networks (CNNSs)
* Convolutional Layer and Pooling layer

 Workflow for Deep Learning

References: Deep Learning Book, 1803.08823

Stanford CS23 (Andrej Karpathy & Fei-Fei Li): https://cs231n.github.io



Benchmark Datasets

MNIST database: images of digits

ImageNet database: > 1.4 x 10’
images (hand annotated),

> 20,000 categories (e.g.
screwdriver, each with @(1000)
examples), http://image-net.org

Performance of algorithms
measured on benchmark datasets.

Other datasets for different problems
(e.g. 3D object recognition,
Language: Wordnet)

Think of some physics examples?

Synset: tiger cat

: Definition: a cat having a striped coat.

Popularity percentile:: 78%
Depth in WordNet: 8

| Synset: lesser panda, red panda, panda, bear cat, cat bee
#" ' Definition: reddish-brown Old World raccoon-like carnivor

giant pandas.
Popularity percentile:: 68%

| Depth in WordNet: 12

Synset: Egyptian cat

Definition: a domestic cat of Egypt.
Popularity percentile:: 67%

Depth in WordNet: 8

Synset: Persian cat

Definition: a long-haired breed of cat.
Popularity percentile:: 59%

Depth in WordNet: 8

Synset: tabby, tabby cat

Definition: a cat with a grey or tawny coat mottled with ble
Popularity percentile:: 58%

Depth in WordNet: 8

Synset: Siamese ca t, Siamese
Definition: a slender short-haired blue-eyed breed of cat t
Popularity percentile:: 57%

) Depth in WordNet: 8

Synset: Madagascar cat, ring-tailed lemur, Lemur catta
Definition: small lemur having its tail barred with black.

\
Ay Popularity percentile:: 45%

Depth in WordNet: 12



Learning with Symmetries

=1 * Locality: features that define a
“cat” are local in the picture:
whiskers, tail, paws, ...

e Translational invariance: Cats can
be anywhere in the image.

# * Rotational invariance: Relative
" position of features must be

respected (e.g. whiskers and tail
should appear in opposite sides)

¥ . Our classifier should exhibit all
these high-level structures.



Learning with Symmetries

* Consider classification of digits:
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 What symmetries shou

Translation, scaling, small

e built-in in ML classifiers?

rotations, smearing, elastic

deformations.




Locality and Symmetries

 Locality & Symmetries: basic principles underlying physical laws.

* Physics is governed by local interactions. Think about QFT,
relativity, and statistical physics:
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Vision tasks: local features
matters, e.g.. whiskers, e T,
edge of a table, ... Ry e




Locality and Symmetries

Symmetries are at the heart of physics. For example, translation
invariance allows to work in momentum space—less parameters

In relativity and quantum field theory, Poincare-symmetry
(translations, rotations, boosts) is essential.

Gauge symmetries are ubiquitous in QFT and gravity. Equivariant
CNNs (Cohen, Welling 2016). We will come back to this...

f(x) is equivariant if we change the input in a particular way as
x' = g - x, the output changes in the same way: f(g - x) = g - f(x):




Convolutional Neural Networks

The simplest approach would be to input the images to a fully
connected NN which given enough training data (and time) would
learn the symmetries by example.

However, a crucial property is ignored: nearby pixels are strongly
correlated we should aim instead first to identify local features
that depend on small subregions.

For example, treating the spin configuration of the 2d Ising model
as a L X L dimensional vector (L = number of sites in each linear
direction) throws away spatial information (e.g., domain wall)

Convolutional Neural Networks (CNNs) are architectures that take
advantage of this additional high-level structures that all-to-all
coupled networks fail to exploit.



Convolutional Neural Networks

A CNN is a translationally invariant neural network that respects locality of the input data.

Depth: number of input channels
(not depth of neural network)

[1]

‘>< Fully
= Connected
Layer

Convolution Coarse-graining
(pooling)

Convolution Coarse-grainin

(pooling)

D=3 for RGB images
Height (H) and Width (W)
determined by # of pixels

pooling layers reduce H, W
while preserving D

neuron activation state:
convolution with local spatial filter
(e.g., 3 x 3 pixel grid)



Convolutional Neural Networks

Convolution of input with filters

non-linearity
CNNs are composed by () F=3 /N /
two kinds of layers s=1  Weight=[1,-1,1]
(units to shift 0 bias=-2 R.eLU
filter by) (unit slope)
-1 0
-1 0
P=1 i,
example of 3 0
convolutional layer 4 4
-6 0
output
input
note that convolution changes the depth, 1\1}1‘}):5

but not the height and width of the network
e.g. 01 + 1*(-1) + 1*2-2 = -1



Convolutional Neural Networks

F=receptive field size of the Conv Layer neurons another example
(with no padding)
S=stride
(b) F=4 /N
P=amount of zero padding on the border S=2 weight=[1,-1,2,1]
(units to shift
filter by) 1 bias=-1 ReLU
Number of neurons (outputs) in the layer: (unit slope)
2 2 1 1
(W-F+2P)/S+1 o 2
-1 1 0 0
0 output
-2
input



Convolutional Neural Networks

Convolution of input with filters

e

Pooling layer that coarse-grains
the input while maintaining
locality and spatial structure

CNNs are composed by
two kinds of layers

~ decimation in RG max pooling

reduces the dim. of outputs

In this example, by pooling
over 2x2 blocks, H and W
are reduced by half.

79| 20

average pooling



Convolutional Neural Networks

Convolution of input with filters

CNNs are composed by

two kinds of layers
Pooling layer that coarse-grains

the input while maintaining
locality and spatial structure

These layers are followed by an all-to-all connected layer and a high-level classifier,
so that one can train CNNs using the standard backpropagation algorithm:
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Convolutional Neural Networks

Significantly reduce the number of parameters: determined by the
number and size of the filters. Further reduced by pooling.

Only problems characterized by spatial locality are amenable to
CNNs, e.g., Ising model and MNIST but not SUSY datasets.
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See Notebook 14: Pytorch CNN (Ising); MNIST example in Ex. 5.

Can you think of the types of datasets in particle physics and
cosmology that are amendable to CNNs?



Workflow for Deep Learning

Establish proxy for optimal error rate (e.g. expert performance)

| ¢ )

Y
— : &5 Bigger model
Training error high? — Train longer

Underfitting | New model architecture

No 6 i

Yes
Validation error high? | ) More d?ta .
Overfitting Regularization |
New model architecture
No
DONE! Inspired by navigating the bias-variance tradeoff.

See Andrew Ng’s talk at the 2016 Deep Learning School:
https://www.youtube.com/watch?v=F1ka6a13S9l



Summary

e Convolutional neural networks (CNNSs)
e Convolutional Layer and Pooling Layer

 Workflow for Deep Learning



