
(Image: Fermilab/CERN)

PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 11: Convolutional Neural Networks

Recap of Lecture 10

• Feedforward neural networks

• Backpropagation

• Regularization

References: Deep Learning Book, 1803.08823

Outline for today

• Convolutional neural networks (CNNs)

• Convolutional Layer and Pooling layer

• Workflow for Deep Learning

References: Deep Learning Book, 1803.08823

Stanford CS23 (Andrej Karpathy & Fei-Fei Li): https://cs231n.github.io

Benchmark Datasets

• MNIST database: images of digits

• ImageNet database:
images (hand annotated),

 categories (e.g.
screwdriver, each with
examples), http://image-net.org

• Performance of algorithms
measured on benchmark datasets.

• Other datasets for different problems
(e.g. 3D object recognition,
Language: Wordnet)

• Think of some physics examples?

≥ 1.4 × 107

≥ 20,000
𝒪(1000)

Benchmark Datasets
… going beyond MNIST

• ImageNet database: images (hand
annotated), categories (e.g. screwdriver,
each with O(1000) examples), 
http://image-net.org

• Performance of algorithms measured on benchmark
datasets

• Other datasets for different problems (e.g. 3D object
recognition, Language: Wordnet)

≥ 1.4 × 107

≥ 20.000

9

Screenshot from image-net.org

Learning with Symmetries

• Locality: features that define a
“cat’’ are local in the picture:
whiskers, tail, paws, …

• Translational invariance: Cats can
be anywhere in the image.

• Rotational invariance: Relative
position of features must be
respected (e.g. whiskers and tail
should appear in opposite sides)

• Our classifier should exhibit all
these high-level structures.
8

Like physical systems, many datasets and supervised learning tasks also possess
additional symmetries and structure what can (and should) be exploited

e.g. we want to train a classifier to identify pictures of
cats. What high-level features must one learn first?

The features that define ``cat’’ are local in the
picture: whiskers, tail, paws …: locality

Cats can be anywhere in the image: translational
invariance

Relative position of features must be respected (eg
whiskers and tail shoaled appear in opposite sides
of ``cat’’): rotational invariance

Our classifier should exhibit all these high-level features

Learning with symmetry

Learning with Symmetries
• Consider classification of digits:

• What symmetries should be built-in in ML classifiers?

Translation, scaling, small rotations, smearing, elastic deformations.

13

what kind of symmetries must we
built-in in our ML classifier model?

Learning with symmetry

 Invariance under translations
 Invariance under scaling

some are obvious choices …

Locality and Symmetries

• Locality & Symmetries: basic principles underlying physical laws.

• Physics is governed by local interactions. Think about QFT,
relativity, and statistical physics:

Phases of the 2D Ising Model

• The Hamiltonian for the 2D Ising Model:

• 2D lattice of L x L spins.

• Periodic boundary conditions.

• Onsager’s exact solution: a phase transition in the thermodynamic
limit at the critical temperature:

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

nearest neighbors

Phases of the 2D Ising Model

• The Hamiltonian for the 2D Ising Model:

• 2D lattice of L x L spins.

• Periodic boundary conditions.

• Onsager’s exact solution: a phase transition in the thermodynamic
limit at the critical temperature:

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

nearest neighbors

Vision tasks: local features
matters, e.g.. whiskers,

edge of a table, …

Locality and Symmetries

• Symmetries are at the heart of physics. For example, translation
invariance allows to work in momentum space→less parameters

• In relativity and quantum field theory, Poincare-symmetry
(translations, rotations, boosts) is essential.

• Gauge symmetries are ubiquitous in QFT and gravity. Equivariant
CNNs (Cohen, Welling 2016). We will come back to this...

• is equivariant if we change the input in a particular way as
, the output changes in the same way: :

f(x)
x′ = g ⋅ x f(g ⋅ x) = g ⋅ f(x)

Convolutional Neural Networks

• The simplest approach would be to input the images to a fully
connected NN which given enough training data (and time) would
learn the symmetries by example.

• However, a crucial property is ignored: nearby pixels are strongly
correlated we should aim instead first to identify local features
that depend on small subregions.

• For example, treating the spin configuration of the 2d Ising model
as a dimensional vector (number of sites in each linear
direction) throws away spatial information (e.g., domain wall)

• Convolutional Neural Networks (CNNs) are architectures that take
advantage of this additional high-level structures that all-to-all
coupled networks fail to exploit.

L × L L =

Convolutional Neural Networks

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 61

Fig. 42. Architecture of a Convolutional Neural Network (CNN). The neurons in a CNN are arranged in three dimensions: height (H), width (W),
and depth (D). For the input layer, the depth corresponds to the number of channels (in this case 3 for RGB images). Neurons in the convolutional
layers calculate the convolution of the image with a local spatial filter (e.g. 3 ⇥ 3 pixel grid, times 3 channels for first layer) at a given location in
the spatial (W ,H)-plane. The depth D of the convolutional layer corresponds to the number of filters used in the convolutional layer. Neurons at
the same depth correspond to the same filter. Neurons in the convolutional layer mix inputs at different depths but preserve the spatial location.
Pooling layers perform a spatial coarse graining (pooling step) at each depth to give a smaller height and width while preserving the depth. The
convolutional and pooling layers are followed by a fully connected layer and classifier (not shown).

10. Convolutional Neural Networks (CNNS)

One of the core lessons of physics is that we should exploit symmetries and invariances when analyzing physical
systems. Properties such as locality and translational invariance are often built directly into the physical laws. Our
statistical physics models often directly incorporate everything we know about the physical system being analyzed. For
example, we know that in many cases it is sufficient to consider only local couplings in our Hamiltonians, or work
directly in momentum space if the system is translationally invariant. This basic idea, tailoring our analysis to exploit
additional structure, is a key feature of modern physical theories from general relativity, through gauge theories, to critical
phenomena.

Like physical systems, many datasets and supervised learning tasks also possess additional symmetries and structure.
For instance, consider a supervised learning task where we want to label images from some dataset as being pictures of
cats or not. Our statistical procedure must first learn features associated with cats. Because a cat is a physical object, we
know that these features are likely to be local (groups of neighboring pixels in the two-dimensional image corresponding
to whiskers, tails, eyes, etc.). We also know that the cat can be anywhere in the image. Thus, it does not really matter
where in the picture these features occur (though relative positions of features likely do matter). This is a manifestation of
translational invariance that is built into our supervised learning task. This example makes clear that, like many physical
systems, many ML tasks (especially in the context of computer vision and image processing) also possess additional
structure, such as locality and translation invariance.

The all-to-all coupled neural networks in the previous section fail to exploit this additional structure. For example,
consider the image of the digit ‘four’ from the MNIST dataset shown in Fig. 26. In the all-to-all coupled neural networks
used there, the 28 ⇥ 28 image was considered a one-dimensional vector of size 282 = 796. This clearly throws away lots of
the spatial information contained in the image. Not surprisingly, the neural networks community realized these problems
and designed a class of neural network architectures, convolutional neural networks or CNNs, that take advantage of this
additional structure (locality and translational invariance) (LeCun et al., 1995). Furthermore, what is especially interesting
from a physics perspective is the recent finding that these CNN architectures are intimately related to models such as
tensor networks (Stoudenmire, 2018; Stoudenmire and Schwab, 2016) and, in particular, MERA-like architectures that
are commonly used in physical models for quantum condensed matter systems (Levine et al., 2017).

10.1. The structure of convolutional neural networks

A convolutional neural network is a translationally invariant neural network that respects locality of the input data.
CNNs are the backbone of many modern deep learning applications and here we just give a high-level overview of CNNs
that should allow the reader to delve directly into the specialized literature. The reader is also strongly encouraged to
consult the excellent, succinct notes for the Stanford CS231n Convolutional Neural Networks class developed by Andrej
Karpathy and Fei-Fei Li (https://cs231n.github.io/). We have drawn heavily on the pedagogical style of these notes in
crafting this section.

There are two kinds of basic layers that make up a CNN: a convolution layer that computes the convolution of the input
with a bank of filters (as a mathematical operation, see this practical guide to image kernels: http://setosa.io/ev/image-
kernels/), and pooling layers that coarse-grain the input while maintaining locality and spatial structure, see Fig. 42. For
two-dimensional data, a layer l is characterized by three numbers: height Hl, width Wl, and depth Dl.12 The height and

12 The depth Dl is often called ‘‘number of channels’’, to distinguish it from the depth of the neural network itself, i.e. the total number of layers
(which can be convolutional, pooling or fully-connected), cf. Fig. 42.

A CNN is a translationally invariant neural network that respects locality of the input data.

Depth: number of input channels
(not depth of neural network)

D=3 for RGB images
Height (H) and Width (W)
determined by # of pixels

neuron activation state:
convolution with local spatial filter

(e.g., 3 x 3 pixel grid)

pooling layers reduce H, W
while preserving D

Convolutional Neural Networks

62 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 43. Two examples to illustrate a one-dimensional convolutional layer with ReLU nonlinearity. Convolutional layer for a spatial filter of size F
for a one-dimensional input of width W with stride S and padding P followed by a ReLU non-linearity.

width correspond to the sizes of the two-dimensional spatial (Wl,Hl)-plane (in neurons), and the depth Dl (marked by
the different colors in Fig. 42) – to the number of filters in that layer. All neurons corresponding to a particular filter have
the same parameters (i.e. shared weights and bias).

In general, we will be concerned with local spatial filters (often called a receptive field in analogy with neuroscience)
that take as inputs a small spatial patch of the previous layer at all depths. For instance, a square filter of size F is a
three-dimensional array of size F ⇥ F ⇥ Dl�1. The convolution consists of running this filter over all locations in the
spatial plane. To demonstrate how this works in practice, let us a consider the simple example consisting of a one-
dimensional input of depth 1, shown in Fig. 43. In this case, a filter of size F ⇥ 1 ⇥ 1 can be specified by a vector of
weights w of length F . The stride, S, encodes by how many neurons we translate the filter by when performing the
convolution. In addition, it is common to pad the input with P zeros (see Fig. 43). For an input of width W , the number
of neurons (outputs) in the layer is given by (W � F + 2P)/S + 1. We invite the reader to check out this visualization of
the convolution procedure, https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md, for a square input
of unit depth. After computing the filter, the output is passed through a non-linearity, a ReLU in Fig. 43. In practice, one
often inserts a BatchNorm layer before the non-linearity, cf. Section 9.4.3.

These convolutional layers are interspersed with pooling layers that coarse-grain spatial information by performing
a subsampling at each depth. One common pooling operation is the max pool. In a max pool, the spatial dimensions
are coarse-grained by replacing a small region (say 2 ⇥ 2 neurons) by a single neuron whose output is the maximum
value of the output in the region. In physics, this pooling step is very similar to the decimation step of RG (Iso et al., 2018;
Koch-Janusz and Ringel, 2017; Lin et al., 2017; Mehta and Schwab, 2014). This generally reduces the dimension of outputs.
For example, if the region we pool over is 2 ⇥ 2, then both the height and the width of the output layer will be halved.
Generally, pooling operations do not reduce the depth of the convolutional layers because pooling is performed separately
at each depth. A simple example of a max-pooling operation is shown in Fig. 44. There are some studies suggesting that
pooling might be unnecessary (Springenberg et al., 2014), but pooling layers remain a staple of most CNNs.

CNNs are composed by
two kinds of layers

Convolution of input with filters

example of
convolutional layer

note that convolution changes the depth,
but not the height and width of the network

non-linearity

18

Convolutional Neural Networks

CNNs are composed by
two kinds of layers

Convolution of input with filters

 example of
convolutional layer

e.g. 0*1 + 1*(-1) + 1*2 - 2 = -1

size-3 Filter

note that convolution changes the depth,
but not the height and width of the network

Convolutional Neural Networks

62 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 43. Two examples to illustrate a one-dimensional convolutional layer with ReLU nonlinearity. Convolutional layer for a spatial filter of size F
for a one-dimensional input of width W with stride S and padding P followed by a ReLU non-linearity.

width correspond to the sizes of the two-dimensional spatial (Wl,Hl)-plane (in neurons), and the depth Dl (marked by
the different colors in Fig. 42) – to the number of filters in that layer. All neurons corresponding to a particular filter have
the same parameters (i.e. shared weights and bias).

In general, we will be concerned with local spatial filters (often called a receptive field in analogy with neuroscience)
that take as inputs a small spatial patch of the previous layer at all depths. For instance, a square filter of size F is a
three-dimensional array of size F ⇥ F ⇥ Dl�1. The convolution consists of running this filter over all locations in the
spatial plane. To demonstrate how this works in practice, let us a consider the simple example consisting of a one-
dimensional input of depth 1, shown in Fig. 43. In this case, a filter of size F ⇥ 1 ⇥ 1 can be specified by a vector of
weights w of length F . The stride, S, encodes by how many neurons we translate the filter by when performing the
convolution. In addition, it is common to pad the input with P zeros (see Fig. 43). For an input of width W , the number
of neurons (outputs) in the layer is given by (W � F + 2P)/S + 1. We invite the reader to check out this visualization of
the convolution procedure, https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md, for a square input
of unit depth. After computing the filter, the output is passed through a non-linearity, a ReLU in Fig. 43. In practice, one
often inserts a BatchNorm layer before the non-linearity, cf. Section 9.4.3.

These convolutional layers are interspersed with pooling layers that coarse-grain spatial information by performing
a subsampling at each depth. One common pooling operation is the max pool. In a max pool, the spatial dimensions
are coarse-grained by replacing a small region (say 2 ⇥ 2 neurons) by a single neuron whose output is the maximum
value of the output in the region. In physics, this pooling step is very similar to the decimation step of RG (Iso et al., 2018;
Koch-Janusz and Ringel, 2017; Lin et al., 2017; Mehta and Schwab, 2014). This generally reduces the dimension of outputs.
For example, if the region we pool over is 2 ⇥ 2, then both the height and the width of the output layer will be halved.
Generally, pooling operations do not reduce the depth of the convolutional layers because pooling is performed separately
at each depth. A simple example of a max-pooling operation is shown in Fig. 44. There are some studies suggesting that
pooling might be unnecessary (Springenberg et al., 2014), but pooling layers remain a staple of most CNNs.

another example
(with no padding)

F=receptive field size of the Conv Layer neurons

S=stride

P=amount of zero padding on the border

Number of neurons (outputs) in the layer:

(W-F+2P)/S+1

Convolutional Neural Networks

CNNs are composed by
two kinds of layers

Convolution of input with filters

Pooling layer that coarse-grains
 the input while maintaining
locality and spatial structure

Juan Rojo D-ITP Advanced Topics: Machine Learning19

Convolutional Neural Networks

CNNs are composed by
two kinds of layers

Convolution layer of input with filters

Pooling layer that coarse-grains the input while
maintaining locality and spatial structure

e.g. MaxPool, the spatial
dimensions are coarse-grained by
replacing a small region by single
neuron whose output is maximum
value of the output in the region

in average pooling, one averages
over output in region

Juan Rojo D-ITP Advanced Topics: Machine Learning19

Convolutional Neural Networks

CNNs are composed by
two kinds of layers

Convolution layer of input with filters

Pooling layer that coarse-grains the input while
maintaining locality and spatial structure

e.g. MaxPool, the spatial
dimensions are coarse-grained by
replacing a small region by single
neuron whose output is maximum
value of the output in the region

in average pooling, one averages
over output in region

Juan Rojo D-ITP Advanced Topics: Machine Learning19

Convolutional Neural Networks

CNNs are composed by
two kinds of layers

Convolution layer of input with filters

Pooling layer that coarse-grains the input while
maintaining locality and spatial structure

e.g. MaxPool, the spatial
dimensions are coarse-grained by
replacing a small region by single
neuron whose output is maximum
value of the output in the region

in average pooling, one averages
over output in region

max pooling

average pooling

~ decimation in RG

reduces the dim. of outputs

In this example, by pooling
over 2x2 blocks, H and W

are reduced by half.

Convolutional Neural Networks

CNNs are composed by
two kinds of layers

Convolution of input with filters

Pooling layer that coarse-grains
 the input while maintaining
locality and spatial structure

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 61

Fig. 42. Architecture of a Convolutional Neural Network (CNN). The neurons in a CNN are arranged in three dimensions: height (H), width (W),
and depth (D). For the input layer, the depth corresponds to the number of channels (in this case 3 for RGB images). Neurons in the convolutional
layers calculate the convolution of the image with a local spatial filter (e.g. 3 ⇥ 3 pixel grid, times 3 channels for first layer) at a given location in
the spatial (W ,H)-plane. The depth D of the convolutional layer corresponds to the number of filters used in the convolutional layer. Neurons at
the same depth correspond to the same filter. Neurons in the convolutional layer mix inputs at different depths but preserve the spatial location.
Pooling layers perform a spatial coarse graining (pooling step) at each depth to give a smaller height and width while preserving the depth. The
convolutional and pooling layers are followed by a fully connected layer and classifier (not shown).

10. Convolutional Neural Networks (CNNS)

One of the core lessons of physics is that we should exploit symmetries and invariances when analyzing physical
systems. Properties such as locality and translational invariance are often built directly into the physical laws. Our
statistical physics models often directly incorporate everything we know about the physical system being analyzed. For
example, we know that in many cases it is sufficient to consider only local couplings in our Hamiltonians, or work
directly in momentum space if the system is translationally invariant. This basic idea, tailoring our analysis to exploit
additional structure, is a key feature of modern physical theories from general relativity, through gauge theories, to critical
phenomena.

Like physical systems, many datasets and supervised learning tasks also possess additional symmetries and structure.
For instance, consider a supervised learning task where we want to label images from some dataset as being pictures of
cats or not. Our statistical procedure must first learn features associated with cats. Because a cat is a physical object, we
know that these features are likely to be local (groups of neighboring pixels in the two-dimensional image corresponding
to whiskers, tails, eyes, etc.). We also know that the cat can be anywhere in the image. Thus, it does not really matter
where in the picture these features occur (though relative positions of features likely do matter). This is a manifestation of
translational invariance that is built into our supervised learning task. This example makes clear that, like many physical
systems, many ML tasks (especially in the context of computer vision and image processing) also possess additional
structure, such as locality and translation invariance.

The all-to-all coupled neural networks in the previous section fail to exploit this additional structure. For example,
consider the image of the digit ‘four’ from the MNIST dataset shown in Fig. 26. In the all-to-all coupled neural networks
used there, the 28 ⇥ 28 image was considered a one-dimensional vector of size 282 = 796. This clearly throws away lots of
the spatial information contained in the image. Not surprisingly, the neural networks community realized these problems
and designed a class of neural network architectures, convolutional neural networks or CNNs, that take advantage of this
additional structure (locality and translational invariance) (LeCun et al., 1995). Furthermore, what is especially interesting
from a physics perspective is the recent finding that these CNN architectures are intimately related to models such as
tensor networks (Stoudenmire, 2018; Stoudenmire and Schwab, 2016) and, in particular, MERA-like architectures that
are commonly used in physical models for quantum condensed matter systems (Levine et al., 2017).

10.1. The structure of convolutional neural networks

A convolutional neural network is a translationally invariant neural network that respects locality of the input data.
CNNs are the backbone of many modern deep learning applications and here we just give a high-level overview of CNNs
that should allow the reader to delve directly into the specialized literature. The reader is also strongly encouraged to
consult the excellent, succinct notes for the Stanford CS231n Convolutional Neural Networks class developed by Andrej
Karpathy and Fei-Fei Li (https://cs231n.github.io/). We have drawn heavily on the pedagogical style of these notes in
crafting this section.

There are two kinds of basic layers that make up a CNN: a convolution layer that computes the convolution of the input
with a bank of filters (as a mathematical operation, see this practical guide to image kernels: http://setosa.io/ev/image-
kernels/), and pooling layers that coarse-grain the input while maintaining locality and spatial structure, see Fig. 42. For
two-dimensional data, a layer l is characterized by three numbers: height Hl, width Wl, and depth Dl.12 The height and

12 The depth Dl is often called ‘‘number of channels’’, to distinguish it from the depth of the neural network itself, i.e. the total number of layers
(which can be convolutional, pooling or fully-connected), cf. Fig. 42.

These layers are followed by an all-to-all connected layer and a high-level classifier,
so that one can train CNNs using the standard backpropagation algorithm:

Convolutional Neural Networks

• Significantly reduce the number of parameters: determined by the
number and size of the filters. Further reduced by pooling.

• Only problems characterized by spatial locality are amenable to
CNNs, e.g., Ising model and MNIST but not SUSY datasets.

• See Notebook 14: Pytorch CNN (Ising); MNIST example in Ex. 5.

• Can you think of the types of datasets in particle physics and
cosmology that are amendable to CNNs?

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

Workflow for Deep Learning
P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 65

Fig. 46. Organizing a workflow for Deep Learning. Schematic illustrating a deep learning workflow inspired by navigating the bias–variance tradeoff
(figure based on Andrew Ng’s talk at the 2016 Deep Learning School available at https://www.youtube.com/watch?v=F1ka6a13S9I.) In this diagram,
we have assumed that there in no mismatch between the distributions the training and test sets are drawn from.

a particular problem. In the second part of this section, we shift gears and ask the question, why have neural networks
been so successful? We provide three different high-level explanations that reflect current dogmas. Finally, we end the
section by discussing the limitations of supervised learning methods and current neural network architectures.

11.1. Organizing deep learning workflows using the bias–variance tradeoff

Imagine that you are given some data and asked to design a neural network for learning how to perform a supervised
learning task. What are the best practices for organizing a systematic workflow that allows us to efficiently do this? Here,
we present a simple deep learning workflow inspired by thinking about the bias–variance tradeoff (see Fig. 46). This
section draws heavily on Andrew Ng’s tutorial at the Deep Learning School (available online at https://www.youtube.
com/watch?v=F1ka6a13S9I) which readers are strongly encouraged to watch.

The first thing we would like to do is divide the data into three parts. A training set, a validation or dev (development)
set, and a test set. The test set is the data on which we want to make predictions. The dev set is a subset of the training
data we use to check how well we are doing out-of-sample, after training the model on the training dataset. We use the
validation error as a proxy for the test error in order to make tweaks to our model. It is crucial that we do not use any
of the test data to train the algorithm. This is a cardinal sin in ML. We thus suggest the following workflow:

Estimate optimal error rate (Bayes rate).—The first thing one should establish is the difficulty of the task and the best
performance one can expect to achieve. No algorithm can do better than the ‘‘signal’’ in the dataset. For example, it is
likely much easier to classify objects in high-resolution images than in very blurry, low-resolution images. Thus, one needs
to establish a proxy or baseline for the optimal performance that can be expected from any algorithm. In the context of
Bayesian statistics, this is often called the Bayes rate. Since we do not know this a priori, we must get an estimate of this.
For many tasks such as speech or object recognition, we can approximate this by the performance of humans on the task.
For a more specialized task, we would like to ask how well experts, trained at the task, perform. This expert performance
then serves as a proxy for our Bayes rate.

Minimize underfitting (bias) on training dataset.— After we have established the Bayes rate, we want to make sure
that we are using a sufficiently complex model to avoid underfitting on the training dataset. In practice, this means
comparing the training error rate to the Bayes rate. Since the training error does not care about generalization (variance),
our model should approach the Bayes rate on the training set. If it does not, the bias of the DNN model is too large and
one should try training the model longer and/or using a larger model. Finally, if none of these techniques work, it is likely
that the model architecture is not well suited to the dataset, and one should modify the neural architecture in some way
to better reflect the underlying structure of the data (symmetries, locality, etc.).

Make sure you are not overfitting.— Next, we run our algorithm on the validation or dev set. If the error is similar to
the training error rate and Bayes rate, we are done. If it is not, then we are overfitting the training data. Possible solutions
include, regularization and, importantly, collecting more data. Finally, if none of these work, one likely has to change the
DNN architecture.

If the validation and test sets are drawn from the same distributions, then good performance on the validation set
should lead to similarly good performance on the test set. (Of course performance will typically be slightly worse on the
test set because the hyperparameters were fit to the validation set.) However, sometimes the training data and test data

Inspired by navigating the bias-variance tradeoff.
See Andrew Ng’s talk at the 2016 Deep Learning School:

https://www.youtube.com/watch?v=F1ka6a13S9I

Summary

• Convolutional neural networks (CNNs)

• Convolutional Layer and Pooling Layer

• Workflow for Deep Learning

