
(Image: Fermilab/CERN)

PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 12: Recurrent Neural Networks

Recap of Lecture 11

• Convolutional neural networks (CNNs)

• Convolutional Layer and Pooling layer

• Workflow for Deep Learning

Outline for today

• Recurrent Neural Networks (RNNs)

• Teacher forcing

• Bi-directional RNNs

• Deep RNNs

• Long term dependencies and gated recurrent units

References: Deep Learning Book

Recurrent Neural Networks
• Processing time-sequenced data, though the time step needs not

refer to the passage of time. RNNs can be applied to images.

• Need not respect the notion of causality: the network may have
connections that go backward in time.

• Like CNNs, essential to RNNs is parameter sharing — this enables
generalization across different sequence lengths/positions in time.

• Example: “I started my PhD study at UW-Madison in 2020” and “In
2020, I started my PhD study at UW-Madison” have the same info.

• Can be used in combination of ConvNet:

t

https://analyticsindiamag.com/overview-of-recurrent-neural-networks-and-their-applications/

Basic Idea

• Include cycles in computational graph which capture the influence
of the present value of a variable on its own value at a future step.

where represents the state (hidden), and external signal.h(t) x(t)

CHAPTER 10

As another example, let us consider a dynamical system driven by an external
signal x(t),

s(t) = f(s(t�1)
,x(t);✓), (10.4)

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as almost

any function can be considered a feedforward neural network, essentially any
function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state,

h(t) = f(h(t�1)
,x(t);✓), (10.5)

illustrated in figure 10.2; typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t)

,x(t�1)
,x(t�2)

, . . . ,x(2)
,x(1)) to a fixed length vector h(t). Depending on the

training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is
used in statistical language modeling, typically to predict the next word given
previous words, storing all the information in the input sequence up to time t

may not be necessary; storing only enough information to predict the rest of the
sentence is sufficient. The most demanding situation is when we ask h(t) to be rich

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(...)h(...) h(...)h(...)

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes

information from the input x by incorporating it into the state h that is passed forward

through time. (Left) Circuit diagram. The black square indicates a delay of a single time

step. (Right) The same network seen as an unfolded computational graph, where each

node is now associated with one particular time instance.

366

CHAPTER 10

As another example, let us consider a dynamical system driven by an external
signal x(t),

s(t) = f(s(t�1)
,x(t);✓), (10.4)

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as almost

any function can be considered a feedforward neural network, essentially any
function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state,

h(t) = f(h(t�1)
,x(t);✓), (10.5)

illustrated in figure 10.2; typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t)

,x(t�1)
,x(t�2)

, . . . ,x(2)
,x(1)) to a fixed length vector h(t). Depending on the

training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is
used in statistical language modeling, typically to predict the next word given
previous words, storing all the information in the input sequence up to time t

may not be necessary; storing only enough information to predict the rest of the
sentence is sufficient. The most demanding situation is when we ask h(t) to be rich

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(...)h(...) h(...)h(...)

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes

information from the input x by incorporating it into the state h that is passed forward

through time. (Left) Circuit diagram. The black square indicates a delay of a single time

step. (Right) The same network seen as an unfolded computational graph, where each

node is now associated with one particular time instance.

366

Circuit
(c.f. biological neural network)

Computational Graph
(information flow in time)

output computed from hindicates a delay of
a single time step

Advantages of RNNs

• Regardless of the sequence length, the learned model always has the
same input size ⇒ generalization to different sequence lengths.

• Parameter sharing: it is possible to use the same transition function
function with the same parameters at every time step ⇒ learn a
single model, rather than a separate model for all possible time steps.

f

specified in terms of transition from one state to another
state, rather than a variable-length history of states

CHAPTER 10

As another example, let us consider a dynamical system driven by an external
signal x(t),

s(t) = f(s(t�1)
,x(t);✓), (10.4)

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as almost

any function can be considered a feedforward neural network, essentially any
function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state,

h(t) = f(h(t�1)
,x(t);✓), (10.5)

illustrated in figure 10.2; typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t)

,x(t�1)
,x(t�2)

, . . . ,x(2)
,x(1)) to a fixed length vector h(t). Depending on the

training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is
used in statistical language modeling, typically to predict the next word given
previous words, storing all the information in the input sequence up to time t

may not be necessary; storing only enough information to predict the rest of the
sentence is sufficient. The most demanding situation is when we ask h(t) to be rich

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(...)h(...) h(...)h(...)

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes

information from the input x by incorporating it into the state h that is passed forward

through time. (Left) Circuit diagram. The black square indicates a delay of a single time

step. (Right) The same network seen as an unfolded computational graph, where each

node is now associated with one particular time instance.

366
Any function involving recurrence can be considered a recurrent neural network.

SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

enough to allow one to approximately recover the input sequence, as in autoencoder
frameworks (chapter 14).

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a
physical implementation of the model, such as a biological neural network. In this
view, the network defines a circuit that operates in real time, with physical parts
whose current state can influence their future state, as in the left of figure 10.2.
Throughout this chapter, we use a black square in a circuit diagram to indicate
that an interaction takes place with a delay of a single time step, from the state
at time t to the state at time t + 1. The other way to draw the RNN is as an
unfolded computational graph, in which each component is represented by many
different variables, with one variable per time step, representing the state of the
component at that point in time. Each variable for each time step is drawn as a
separate node of the computational graph, as in the right of figure 10.2. What we
call unfolding is the operation that maps a circuit, as in the left side of the figure,
to a computational graph with repeated pieces, as in the right side. The unfolded
graph now has a size that depends on the sequence length.

We can represent the unfolded recurrence after t steps with a function g
(t):

h(t) =g
(t)(x(t)

,x(t�1)
,x(t�2)

, . . . ,x(2)
,x(1)) (10.6)

=f(h(t�1)
,x(t);✓). (10.7)

The function g
(t) takes the whole past sequence (x(t)

,x(t�1)
,x(t�2)

, . . . ,x(2)
,x(1))

as input and produces the current state, but the unfolded recurrent structure
allows us to factorize g

(t) into repeated application of a function f . The unfolding
process thus introduces two major advantages:

1. Regardless of the sequence length, the learned model always has the same
input size, because it is specified in terms of transition from one state to
another state, rather than specified in terms of a variable-length history of
states.

2. It is possible to use the same transition function f with the same parameters
at every time step.

These two factors make it possible to learn a single model f that operates on all
time steps and all sequence lengths, rather than needing to learn a separate model
g
(t) for all possible time steps. Learning a single shared model allows generalization

to sequence lengths that did not appear in the training set, and enables the model

367

RNN Types: Output at each time step
SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

UU

VV

WW

o(t�1)o(t�1)

hh

oo

yy

LL

xx

o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

WWWW WW WW

h(...)h(...) h(...)h(...)

VV VV VV

UU UU UU

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network

that maps an input sequence of x values to a corresponding sequence of output o values.

A loss L measures how far each o is from the corresponding training target y. When using

softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally

computes ŷ = softmax(o) and compares this to the target y. The RNN has input to hidden

connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections

parametrized by a weight matrix W , and hidden-to-output connections parametrized

by a weight matrix V . Equation 10.8 defines forward propagation in this model. (Left)
The RNN and its loss drawn with recurrent connections. (Right) The same seen as a

time-unfolded computational graph, where each node is now associated with one particular

time instance.

compute all functions in this setting using a single specific RNN of finite size
(Siegelmann and Sontag[1995] use 886 units). The “input” of the Turing machine is
a specification of the function to be computed, so the same network that simulates
this Turing machine is sufficient for all problems. The theoretical RNN used for
the proof can simulate an unbounded stack by representing its activations and
weights with rational numbers of unbounded precision.

We now develop the forward propagation equations for the RNN depicted in
figure 10.3. The figure does not specify the choice of activation function for the
hidden units. Here we assume the hyperbolic tangent activation function. Also, the
figure does not specify exactly what form the output and loss function take. Here
we assume that the output is discrete, as if the RNN is used to predict words or
characters. A natural way to represent discrete variables is to regard the output o

369

CHAPTER 10

U

V
W

o(t�1)o(t�1)

hh

oo

yy

LL

xx

o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

WW W W
o(...)o(...)

h(...)h(...)

V V V

U U U

Unfold

Figure 10.4: An RNN whose only recurrence is the feedback connection from the output

to the hidden layer. At each time step t, the input is xt, the hidden layer activations are

h(t)
, the outputs are o(t)

, the targets are y(t)
, and the loss is L

(t)
. (Left) Circuit diagram.

(Right) Unfolded computational graph. Such an RNN is less powerful (can express a

smaller set of functions) than those in the family represented by figure 10.3. The RNN

in figure 10.3 can choose to put any information it wants about the past into its hidden

representation h and transmit h to the future. The RNN in this figure is trained to put

a specific output value into o, and o is the only information it is allowed to send to the

future. There are no direct connections from h going forward. The previous h is connected

to the present only indirectly, via the predictions it was used to produce. Unless o is

very high-dimensional and rich, it will usually lack important information from the past.

This makes the RNN in this figure less powerful, but it may be easier to train because

each time step can be trained in isolation from the others, allowing greater parallelization

during training, as described in section 10.2.1.

as giving the unnormalized log probabilities of each possible value of the discrete
variable. We can then apply the softmax operation as a post-processing step to
obtain a vector ŷ of normalized probabilities over the output. Forward propagation
begins with a specification of the initial state h(0). Then, for each time step from
t = 1 to t = ⌧ , we apply the following update equations:

a(t) = b + Wh(t�1) + Ux(t)
, (10.8)

h(t) = tanh(a(t)), (10.9)
o(t) = c + V h(t)

, (10.10)
370

SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

h(t�1)h(t�1)

W h(t)h(t)

x(t�1)x(t�1) x(t)x(t) x(...)x(...)

W W

U U U

h(⌧)h(⌧)

x(⌧)x(⌧)

W

U

o(⌧)o(⌧)y(⌧)y(⌧)

L(⌧)L(⌧)

V

.

Figure 10.5: Time-unfolded recurrent neural network with a single output at the end

of the sequence. Such a network can be used to summarize a sequence and produce a

fixed-size representation used as input for further processing. There might be a target

right at the end (as depicted here), or the gradient on the output o(t)
can be obtained by

back-propagating from further downstream modules.

ŷ(t) = softmax(o(t)), (10.11)

where the parameters are the bias vectors b and c along with the weight matrices
U , V and W , respectively, for input-to-hidden, hidden-to-output and hidden-
to-hidden connections. This is an example of a recurrent network that maps an
input sequence to an output sequence of the same length. The total loss for a
given sequence of x values paired with a sequence of y values would then be just
the sum of the losses over all the time steps. For example, if L

(t) is the negative
log-likelihood of y

(t) given x(1)
, . . . ,x(t), then

L

⇣
{x(1)

, . . . ,x(⌧)}, {y(1)
, . . . ,y(⌧)}

⌘
(10.12)

=
X

t

L
(t) (10.13)

=�
X

t

log pmodel

⇣
y

(t) | {x(1)
, . . . ,x(t)}

⌘
, (10.14)

where pmodel

�
y

(t) | {x(1)
, . . . ,x(t)}

�
is given by reading the entry for y

(t) from the
model’s output vector ŷ(t). Computing the gradient of this loss function with respect
to the parameters is an expensive operation. The gradient computation involves
performing a forward propagation pass moving left to right through our illustration

371

Learnable parameters:
b, c, U, V, W

Example:

Gradient of loss function can be
computed by back propagation

through time (BBTT)

RNN Types: Output at as input at t t + 1CHAPTER 10

U

V
W

o(t�1)o(t�1)

hh

oo

yy

LL

xx

o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

WW W W
o(...)o(...)

h(...)h(...)

V V V

U U U

Unfold

Figure 10.4: An RNN whose only recurrence is the feedback connection from the output

to the hidden layer. At each time step t, the input is xt, the hidden layer activations are

h(t)
, the outputs are o(t)

, the targets are y(t)
, and the loss is L

(t)
. (Left) Circuit diagram.

(Right) Unfolded computational graph. Such an RNN is less powerful (can express a

smaller set of functions) than those in the family represented by figure 10.3. The RNN

in figure 10.3 can choose to put any information it wants about the past into its hidden

representation h and transmit h to the future. The RNN in this figure is trained to put

a specific output value into o, and o is the only information it is allowed to send to the

future. There are no direct connections from h going forward. The previous h is connected

to the present only indirectly, via the predictions it was used to produce. Unless o is

very high-dimensional and rich, it will usually lack important information from the past.

This makes the RNN in this figure less powerful, but it may be easier to train because

each time step can be trained in isolation from the others, allowing greater parallelization

during training, as described in section 10.2.1.

as giving the unnormalized log probabilities of each possible value of the discrete
variable. We can then apply the softmax operation as a post-processing step to
obtain a vector ŷ of normalized probabilities over the output. Forward propagation
begins with a specification of the initial state h(0). Then, for each time step from
t = 1 to t = ⌧ , we apply the following update equations:

a(t) = b + Wh(t�1) + Ux(t)
, (10.8)

h(t) = tanh(a(t)), (10.9)
o(t) = c + V h(t)

, (10.10)
370

Less expressive, but may be easier to train because each time step can be trained
in isolation from the others, allowing greater parallelization during training.

RNN Types: Output after entire sequence
SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

h(t�1)h(t�1)

W h(t)h(t)

x(t�1)x(t�1) x(t)x(t) x(...)x(...)

W W

U U U

h(⌧)h(⌧)

x(⌧)x(⌧)

W

U

o(⌧)o(⌧)y(⌧)y(⌧)

L(⌧)L(⌧)

V

.

Figure 10.5: Time-unfolded recurrent neural network with a single output at the end

of the sequence. Such a network can be used to summarize a sequence and produce a

fixed-size representation used as input for further processing. There might be a target

right at the end (as depicted here), or the gradient on the output o(t)
can be obtained by

back-propagating from further downstream modules.

ŷ(t) = softmax(o(t)), (10.11)

where the parameters are the bias vectors b and c along with the weight matrices
U , V and W , respectively, for input-to-hidden, hidden-to-output and hidden-
to-hidden connections. This is an example of a recurrent network that maps an
input sequence to an output sequence of the same length. The total loss for a
given sequence of x values paired with a sequence of y values would then be just
the sum of the losses over all the time steps. For example, if L

(t) is the negative
log-likelihood of y

(t) given x(1)
, . . . ,x(t), then

L

⇣
{x(1)

, . . . ,x(⌧)}, {y(1)
, . . . ,y(⌧)}

⌘
(10.12)

=
X

t

L
(t) (10.13)

=�
X

t

log pmodel

⇣
y

(t) | {x(1)
, . . . ,x(t)}

⌘
, (10.14)

where pmodel

�
y

(t) | {x(1)
, . . . ,x(t)}

�
is given by reading the entry for y

(t) from the
model’s output vector ŷ(t). Computing the gradient of this loss function with respect
to the parameters is an expensive operation. The gradient computation involves
performing a forward propagation pass moving left to right through our illustration

371

Teacher Forcing

SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

In this example, we see that at time t = 2, the model is trained to maximize the
conditional probability of y(2) given both the x sequence so far and the previous y
value from the training set. Maximum likelihood thus specifies that during training,
rather than feeding the model’s own output back into itself, these connections
should be fed with the target values specifying what the correct output should be.
This is illustrated in figure 10.6.

We originally motivated teacher forcing as allowing us to avoid back-propagation
through time in models that lack hidden-to-hidden connections. Teacher forcing
may still be applied to models that have hidden-to-hidden connections as long
as they have connections from the output at one time step to values computed
in the next time step. As soon as the hidden units become a function of earlier
time steps, however, the BPTT algorithm is necessary. Some models may thus be
trained with both teacher forcing and BPTT.

o(t�1)o(t�1) o(t)o(t)

h(t�1)h(t�1) h(t)h(t)

x(t�1)x(t�1) x(t)x(t)

W
V V

U U

o(t�1)o(t�1) o(t)o(t)

L(t�1)L(t�1) L(t)L(t)

y(t�1)y(t�1) y(t)y(t)

h(t�1)h(t�1) h(t)h(t)

x(t�1)x(t�1) x(t)x(t)

W

V V

U U

Train time Test time

Figure 10.6: Illustration of teacher forcing. Teacher forcing is a training technique that is

applicable to RNNs that have connections from their output to their hidden states at the

next time step. (Left) At train time, we feed the correct output y(t)
drawn from the train

set as input to h(t+1)
. (Right) When the model is deployed, the true output is generally

not known. In this case, we approximate the correct output y(t)
with the model’s output

o(t)
, and feed the output back into the model.

373

• Problem of hidden-to-hidden
recurrence: long computation & not
parallelizable as the computation is
sequential ⇒ Expensive to train

• Output-to-hidden: not expressive.

• Use ground truth output at as
input at for the training set.

• Disadvantage: input that network
sees during training might be quite
different from that during testing.

t
t + 1

Some models can be trained with
both teacher forcing and BBTT
randomly (Bengio et al, 2015)

Bidirectional RNNs
CHAPTER 10

o(t�1)o(t�1) o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

g(t�1)g(t�1) g(t)g(t) g(t+1)g(t+1)

Figure 10.11: Computation of a typical bidirectional recurrent neural network, meant

to learn to map input sequences x to target sequences y, with loss L
(t)

at each step t.

The h recurrence propagates information forward in time (toward the right), while the g
recurrence propagates information backward in time (toward the left). Thus at each point

t, the output units o(t)
can benefit from a relevant summary of the past in its h(t)

input

and from a relevant summary of the future in its g(t)
input.

This idea can be naturally extended to two-dimensional input, such as images,
by having four RNNs, each one going in one of the four directions: up, down,
left, right. At each point (i, j) of a 2-D grid, an output Oi,j could then compute a
representation that would capture mostly local information but could also depend
on long-range inputs, if the RNN is able to learn to carry that information.
Compared to a convolutional network, RNNs applied to images are typically more
expensive but allow for long-range lateral interactions between features in the
same feature map (Visin et al., 2015; Kalchbrenner et al., 2015). Indeed, the
forward propagation equations for such RNNs may be written in a form that shows
they use a convolution that computes the bottom-up input to each layer, prior
to the recurrent propagation across the feature map that incorporates the lateral
interactions.

384

• Example: speech recognition. Current sound
may depend on the next few sounds
(articulation, posing a question)

• Another example: Handwriting recognition.

• Combination of 2 RNNs: one moving forward
in time, another backward in time.

• Generalization: multiple directions (e.g. 2D grid
up, down, left, right).

• Compared with CNNs, RNNs applied to
images are typically more expensive but allow
for long-range lateral interactions between
features in the same feature map.

Deep RNNs

• Make each computation U, V,
W deep.

• Replace “linear function” with
some deep network.

• Problem: optimization more
involved (not a priori clear
whether model is trainable).

CHAPTER 10

h

y

x

z

(a) (b) (c)

x

h

y

x

h

y

Figure 10.13: A recurrent neural network can be made deep in many ways (Pascanu

et al., 2014a). (a) The hidden recurrent state can be broken down into groups organized

hierarchically. (b) Deeper computation (e.g., an MLP) can be introduced in the input-to-

hidden, hidden-to-hidden, and hidden-to-output parts. This may lengthen the shortest

path linking different time steps. (c) The path-lengthening effect can be mitigated by

introducing skip connections.

10.6 Recursive Neural Networks

Recursive neural networks2 represent yet another generalization of recurrent net-
works, with a different kind of computational graph, which is structured as a deep
tree, rather than the chain-like structure of RNNs. The typical computational graph
for a recursive network is illustrated in figure 10.14. Recursive neural networks were
introduced by Pollack (1990), and their potential use for learning to reason was
described by Bottou (2011). Recursive networks have been successfully applied to
processing data structures as input to neural nets (Frasconi et al., 1997, 1998), in
natural language processing (Socher et al., 2011a,c, 2013a), as well as in computer
vision (Socher et al., 2011b).

2We suggest not abbreviating “recursive neural network” as “RNN” to avoid confusion with
“recurrent neural network.”

388

Challenge of long-term dependencies

• The recurrence relation can be described as matrix multiplication:

• Using the eigendecomposition of :

• The recurrence is amplified by the number of time steps:

• Let be the eigenvalues of , decays to zero
(explodes); not aligned with the largest eigenvector discarded.

• Network trainable if gradient , gradient of long-term interaction ≪
gradient of a short-term interaction.

W

λ Λ λ < 1 (λ > 1) ⇒ h(t)

h(0)

≈ 0

CHAPTER 10

Many variants of the recursive net idea are possible. For example, Frasconi
et al. (1997) and Frasconi et al. (1998) associate the data with a tree structure,
and associate the inputs and targets with individual nodes of the tree. The
computation performed by each node does not have to be the traditional artificial
neuron computation (affine transformation of all inputs followed by a monotone
nonlinearity). For example, Socher et al. (2013a) propose using tensor operations
and bilinear forms, which have previously been found useful to model relationships
between concepts (Weston et al., 2010; Bordes et al., 2012) when the concepts are
represented by continuous vectors (embeddings).

10.7 The Challenge of Long-Term Dependencies

The mathematical challenge of learning long-term dependencies in recurrent net-
works is introduced in section 8.2.5. The basic problem is that gradients propagated
over many stages tend to either vanish (most of the time) or explode (rarely, but
with much damage to the optimization). Even if we assume that the parameters are
such that the recurrent network is stable (can store memories, with gradients not
exploding), the difficulty with long-term dependencies arises from the exponentially
smaller weights given to long-term interactions (involving the multiplication of
many Jacobians) compared to short-term ones. Many other sources provide a
deeper treatment (Hochreiter, 1991; Doya, 1993; Bengio et al., 1994; Pascanu et al.,
2013). In this section, we describe the problem in more detail. The remaining
sections describe approaches to overcoming the problem.

Recurrent networks involve the composition of the same function multiple
times, once per time step. These compositions can result in extremely nonlinear
behavior, as illustrated in figure 10.15.

In particular, the function composition employed by recurrent neural networks
somewhat resembles matrix multiplication. We can think of the recurrence relation

h(t) = W>h(t�1) (10.36)

as a very simple recurrent neural network lacking a nonlinear activation func-
tion, and lacking inputs x. As described in section 8.2.5, this recurrence relation
essentially describes the power method. It may be simplified to

h(t) =
�
W t

�>
h(0)

, (10.37)

and if W admits an eigendecomposition of the form

W = Q⇤Q>
, (10.38)

390

CHAPTER 10

Many variants of the recursive net idea are possible. For example, Frasconi
et al. (1997) and Frasconi et al. (1998) associate the data with a tree structure,
and associate the inputs and targets with individual nodes of the tree. The
computation performed by each node does not have to be the traditional artificial
neuron computation (affine transformation of all inputs followed by a monotone
nonlinearity). For example, Socher et al. (2013a) propose using tensor operations
and bilinear forms, which have previously been found useful to model relationships
between concepts (Weston et al., 2010; Bordes et al., 2012) when the concepts are
represented by continuous vectors (embeddings).

10.7 The Challenge of Long-Term Dependencies

The mathematical challenge of learning long-term dependencies in recurrent net-
works is introduced in section 8.2.5. The basic problem is that gradients propagated
over many stages tend to either vanish (most of the time) or explode (rarely, but
with much damage to the optimization). Even if we assume that the parameters are
such that the recurrent network is stable (can store memories, with gradients not
exploding), the difficulty with long-term dependencies arises from the exponentially
smaller weights given to long-term interactions (involving the multiplication of
many Jacobians) compared to short-term ones. Many other sources provide a
deeper treatment (Hochreiter, 1991; Doya, 1993; Bengio et al., 1994; Pascanu et al.,
2013). In this section, we describe the problem in more detail. The remaining
sections describe approaches to overcoming the problem.

Recurrent networks involve the composition of the same function multiple
times, once per time step. These compositions can result in extremely nonlinear
behavior, as illustrated in figure 10.15.

In particular, the function composition employed by recurrent neural networks
somewhat resembles matrix multiplication. We can think of the recurrence relation

h(t) = W>h(t�1) (10.36)

as a very simple recurrent neural network lacking a nonlinear activation func-
tion, and lacking inputs x. As described in section 8.2.5, this recurrence relation
essentially describes the power method. It may be simplified to

h(t) =
�
W t

�>
h(0)

, (10.37)

and if W admits an eigendecomposition of the form

W = Q⇤Q>
, (10.38)

390

SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

Figure 10.15: Repeated function composition. When composing many nonlinear functions

(like the linear-tanh layer shown here), the result is highly nonlinear, typically with most

of the values associated with a tiny derivative, some values with a large derivative, and

many alternations between increasing and decreasing. Here, we plot a linear projection of

a 100-dimensional hidden state down to a single dimension, plotted on the y-axis. The

x-axis is the coordinate of the initial state along a random direction in the 100-dimensional

space. We can thus view this plot as a linear cross-section of a high-dimensional function.

The plots show the function after each time step, or equivalently, after each number of

times the transition function has been composed.

with orthogonal Q, the recurrence may be simplified further to

h(t) = Q>⇤tQh(0)
. (10.39)

The eigenvalues are raised to the power of t, causing eigenvalues with magnitude
less than one to decay to zero and eigenvalues with magnitude greater than one to
explode. Any component of h(0) that is not aligned with the largest eigenvector
will eventually be discarded.

This problem is particular to recurrent networks. In the scalar case, imagine
multiplying a weight w by itself many times. The product w

t will either vanish
or explode depending on the magnitude of w. If we make a nonrecurrent network
that has a different weight w

(t) at each time step, the situation is different. If the
initial state is given by 1, then the state at time t is given by

Q
t w

(t). Suppose
that the w

(t) values are generated randomly, independently from one another, with
zero mean and variance v. The variance of the product is O(vn). To obtain some
desired variance v

⇤ we may choose the individual weights with variance v = n
p

v⇤.
Very deep feedforward networks with carefully chosen scaling can thus avoid the
vanishing and exploding gradient problem, as argued by Sussillo (2014).

The vanishing and exploding gradient problem for RNNs was independently
discovered by separate researchers (Hochreiter, 1991; Bengio et al., 1993, 1994).

391

CHAPTER 10

Many variants of the recursive net idea are possible. For example, Frasconi
et al. (1997) and Frasconi et al. (1998) associate the data with a tree structure,
and associate the inputs and targets with individual nodes of the tree. The
computation performed by each node does not have to be the traditional artificial
neuron computation (affine transformation of all inputs followed by a monotone
nonlinearity). For example, Socher et al. (2013a) propose using tensor operations
and bilinear forms, which have previously been found useful to model relationships
between concepts (Weston et al., 2010; Bordes et al., 2012) when the concepts are
represented by continuous vectors (embeddings).

10.7 The Challenge of Long-Term Dependencies

The mathematical challenge of learning long-term dependencies in recurrent net-
works is introduced in section 8.2.5. The basic problem is that gradients propagated
over many stages tend to either vanish (most of the time) or explode (rarely, but
with much damage to the optimization). Even if we assume that the parameters are
such that the recurrent network is stable (can store memories, with gradients not
exploding), the difficulty with long-term dependencies arises from the exponentially
smaller weights given to long-term interactions (involving the multiplication of
many Jacobians) compared to short-term ones. Many other sources provide a
deeper treatment (Hochreiter, 1991; Doya, 1993; Bengio et al., 1994; Pascanu et al.,
2013). In this section, we describe the problem in more detail. The remaining
sections describe approaches to overcoming the problem.

Recurrent networks involve the composition of the same function multiple
times, once per time step. These compositions can result in extremely nonlinear
behavior, as illustrated in figure 10.15.

In particular, the function composition employed by recurrent neural networks
somewhat resembles matrix multiplication. We can think of the recurrence relation

h(t) = W>h(t�1) (10.36)

as a very simple recurrent neural network lacking a nonlinear activation func-
tion, and lacking inputs x. As described in section 8.2.5, this recurrence relation
essentially describes the power method. It may be simplified to

h(t) =
�
W t

�>
h(0)

, (10.37)

and if W admits an eigendecomposition of the form

W = Q⇤Q>
, (10.38)

390

Gated RNNs

• How to avoid difference between long- and short-term memory?

• Idea: Create paths through time that neither vanish nor explode.

• Change connection weights at each time step.

• Idea: Once relevant information of past states has been used, forget
the old state. Use trainable parameters to decide when to do it.

• LSTM-layer (long-short-term-memory-layer)

LSTM

CHAPTER 10

are output by the model itself. The LSTM has been found extremely successful
in many applications, such as unconstrained handwriting recognition (Graves
et al., 2009), speech recognition (Graves et al., 2013; Graves and Jaitly, 2014),
handwriting generation (Graves, 2013), machine translation (Sutskever et al.,
2014), image captioning (Kiros et al., 2014b; Vinyals et al., 2014b; Xu et al.,
2015), and parsing (Vinyals et al., 2014a).

The LSTM block diagram is illustrated in figure 10.16. The corresponding
forward propagation equations are given below, for a shallow recurrent network
architecture. Deeper architectures have also been successfully used (Graves et al.,

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected

recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.

An input feature is computed with a regular artificial neuron unit. Its value can be

accumulated into the state if the sigmoidal input gate allows it. The state unit has a linear

self-loop whose weight is controlled by the forget gate. The output of the cell can be shut

off by the output gate. All the gating units have a sigmoid nonlinearity, while the input

unit can have any squashing nonlinearity. The state unit can also be used as an extra

input to the gating units. The black square indicates a delay of a single time step.

398

SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

2013; Pascanu et al., 2014a). Instead of a unit that simply applies an element-wise
nonlinearity to the affine transformation of inputs and recurrent units, LSTM
recurrent networks have “LSTM cells” that have an internal recurrence (a self-loop),
in addition to the outer recurrence of the RNN. Each cell has the same inputs and
outputs as an ordinary recurrent network, but also has more parameters and a
system of gating units that controls the flow of information. The most important
component is the state unit s

(t)
i , which has a linear self-loop similar to the leaky

units described in the previous section. Here, however, the self-loop weight (or the
associated time constant) is controlled by a forget gate unit f

(t)
i (for time step t

and cell i), which sets this weight to a value between 0 and 1 via a sigmoid unit:

f
(t)
i = �

0

@b
f
i +

X

j

U
f
i,jx

(t)
j +

X

j

W
f
i,jh

(t�1)
j

1

A, (10.40)

where x(t) is the current input vector and h(t) is the current hidden layer vector,
containing the outputs of all the LSTM cells, and bf ,U f , W f are respectively
biases, input weights, and recurrent weights for the forget gates. The LSTM cell
internal state is thus updated as follows, but with a conditional self-loop weight
f

(t)
i :

s
(t)
i = f

(t)
i s

(t�1)
i + g

(t)
i �

0

@bi +
X

j

Ui,jx
(t)
j +

X

j

Wi,jh
(t�1)
j

1

A , (10.41)

where b, U and W respectively denote the biases, input weights, and recurrent
weights into the LSTM cell. The external input gate unit g

(t)
i is computed

similarly to the forget gate (with a sigmoid unit to obtain a gating value between
0 and 1), but with its own parameters:

g
(t)
i = �

0

@b
g
i +

X

j

U
g
i,jx

(t)
j +

X

j

W
g
i,jh

(t�1)
j

1

A . (10.42)

The output h
(t)
i of the LSTM cell can also be shut off, via the output gate q

(t)
i ,

which also uses a sigmoid unit for gating:

h
(t)
i = tanh

⇣
s
(t)
i

⌘
q
(t)
i , (10.43)

q
(t)
i = �

0

@b
o
i +

X

j

U
o
i,jx

(t)
j +

X

j

W
o
i,jh

(t�1)
j

1

A, (10.44)

399

SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

2013; Pascanu et al., 2014a). Instead of a unit that simply applies an element-wise
nonlinearity to the affine transformation of inputs and recurrent units, LSTM
recurrent networks have “LSTM cells” that have an internal recurrence (a self-loop),
in addition to the outer recurrence of the RNN. Each cell has the same inputs and
outputs as an ordinary recurrent network, but also has more parameters and a
system of gating units that controls the flow of information. The most important
component is the state unit s

(t)
i , which has a linear self-loop similar to the leaky

units described in the previous section. Here, however, the self-loop weight (or the
associated time constant) is controlled by a forget gate unit f

(t)
i (for time step t

and cell i), which sets this weight to a value between 0 and 1 via a sigmoid unit:

f
(t)
i = �

0

@b
f
i +

X

j

U
f
i,jx

(t)
j +

X

j

W
f
i,jh

(t�1)
j

1

A, (10.40)

where x(t) is the current input vector and h(t) is the current hidden layer vector,
containing the outputs of all the LSTM cells, and bf ,U f , W f are respectively
biases, input weights, and recurrent weights for the forget gates. The LSTM cell
internal state is thus updated as follows, but with a conditional self-loop weight
f

(t)
i :

s
(t)
i = f

(t)
i s

(t�1)
i + g

(t)
i �

0

@bi +
X

j

Ui,jx
(t)
j +

X

j

Wi,jh
(t�1)
j

1

A , (10.41)

where b, U and W respectively denote the biases, input weights, and recurrent
weights into the LSTM cell. The external input gate unit g

(t)
i is computed

similarly to the forget gate (with a sigmoid unit to obtain a gating value between
0 and 1), but with its own parameters:

g
(t)
i = �

0

@b
g
i +

X

j

U
g
i,jx

(t)
j +

X

j

W
g
i,jh

(t�1)
j

1

A . (10.42)

The output h
(t)
i of the LSTM cell can also be shut off, via the output gate q

(t)
i ,

which also uses a sigmoid unit for gating:

h
(t)
i = tanh

⇣
s
(t)
i

⌘
q
(t)
i , (10.43)

q
(t)
i = �

0

@b
o
i +

X

j

U
o
i,jx

(t)
j +

X

j

W
o
i,jh

(t�1)
j

1

A, (10.44)

399

SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

2013; Pascanu et al., 2014a). Instead of a unit that simply applies an element-wise
nonlinearity to the affine transformation of inputs and recurrent units, LSTM
recurrent networks have “LSTM cells” that have an internal recurrence (a self-loop),
in addition to the outer recurrence of the RNN. Each cell has the same inputs and
outputs as an ordinary recurrent network, but also has more parameters and a
system of gating units that controls the flow of information. The most important
component is the state unit s

(t)
i , which has a linear self-loop similar to the leaky

units described in the previous section. Here, however, the self-loop weight (or the
associated time constant) is controlled by a forget gate unit f

(t)
i (for time step t

and cell i), which sets this weight to a value between 0 and 1 via a sigmoid unit:

f
(t)
i = �

0

@b
f
i +

X

j

U
f
i,jx

(t)
j +

X

j

W
f
i,jh

(t�1)
j

1

A, (10.40)

where x(t) is the current input vector and h(t) is the current hidden layer vector,
containing the outputs of all the LSTM cells, and bf ,U f , W f are respectively
biases, input weights, and recurrent weights for the forget gates. The LSTM cell
internal state is thus updated as follows, but with a conditional self-loop weight
f

(t)
i :

s
(t)
i = f

(t)
i s

(t�1)
i + g

(t)
i �

0

@bi +
X

j

Ui,jx
(t)
j +

X

j

Wi,jh
(t�1)
j

1

A , (10.41)

where b, U and W respectively denote the biases, input weights, and recurrent
weights into the LSTM cell. The external input gate unit g

(t)
i is computed

similarly to the forget gate (with a sigmoid unit to obtain a gating value between
0 and 1), but with its own parameters:

g
(t)
i = �

0

@b
g
i +

X

j

U
g
i,jx

(t)
j +

X

j

W
g
i,jh

(t�1)
j

1

A . (10.42)

The output h
(t)
i of the LSTM cell can also be shut off, via the output gate q

(t)
i ,

which also uses a sigmoid unit for gating:

h
(t)
i = tanh

⇣
s
(t)
i

⌘
q
(t)
i , (10.43)

q
(t)
i = �

0

@b
o
i +

X

j

U
o
i,jx

(t)
j +

X

j

W
o
i,jh

(t�1)
j

1

A, (10.44)

399

SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

2013; Pascanu et al., 2014a). Instead of a unit that simply applies an element-wise
nonlinearity to the affine transformation of inputs and recurrent units, LSTM
recurrent networks have “LSTM cells” that have an internal recurrence (a self-loop),
in addition to the outer recurrence of the RNN. Each cell has the same inputs and
outputs as an ordinary recurrent network, but also has more parameters and a
system of gating units that controls the flow of information. The most important
component is the state unit s

(t)
i , which has a linear self-loop similar to the leaky

units described in the previous section. Here, however, the self-loop weight (or the
associated time constant) is controlled by a forget gate unit f

(t)
i (for time step t

and cell i), which sets this weight to a value between 0 and 1 via a sigmoid unit:

f
(t)
i = �

0

@b
f
i +

X

j

U
f
i,jx

(t)
j +

X

j

W
f
i,jh

(t�1)
j

1

A, (10.40)

where x(t) is the current input vector and h(t) is the current hidden layer vector,
containing the outputs of all the LSTM cells, and bf ,U f , W f are respectively
biases, input weights, and recurrent weights for the forget gates. The LSTM cell
internal state is thus updated as follows, but with a conditional self-loop weight
f

(t)
i :

s
(t)
i = f

(t)
i s

(t�1)
i + g

(t)
i �

0

@bi +
X

j

Ui,jx
(t)
j +

X

j

Wi,jh
(t�1)
j

1

A , (10.41)

where b, U and W respectively denote the biases, input weights, and recurrent
weights into the LSTM cell. The external input gate unit g

(t)
i is computed

similarly to the forget gate (with a sigmoid unit to obtain a gating value between
0 and 1), but with its own parameters:

g
(t)
i = �

0

@b
g
i +

X

j

U
g
i,jx

(t)
j +

X

j

W
g
i,jh

(t�1)
j

1

A . (10.42)

The output h
(t)
i of the LSTM cell can also be shut off, via the output gate q

(t)
i ,

which also uses a sigmoid unit for gating:

h
(t)
i = tanh

⇣
s
(t)
i

⌘
q
(t)
i , (10.43)

q
(t)
i = �

0

@b
o
i +

X

j

U
o
i,jx

(t)
j +

X

j

W
o
i,jh

(t�1)
j

1

A, (10.44)

399

Forget gate:

Output gate:

External input gate:

Internal state update:

Summary

• Recurrent Neural Networks (RNNs)

• Teacher forcing

• Bi-directional RNNs

• Deep RNNs

• Long term dependencies and gated recurrent units

