PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

age: Fermilab/CERN)

Lecture 12: Recurrent Neural Networks



Recap of Lecture 11

e Convolutional neural networks (CNNSs)
 Convolutional Layer and Pooling layer

 Workflow for Deep Learning



Outline for today

 Recurrent Neural Networks (RNNs)
e Teacher forcing

e Bi-directional RNNs

e Deep RNNs

 Long term dependencies and gated recurrent units

References: Deep Learning Book



Recurrent Neural Networks

Processing time-sequenced data, though the time step 7 needs not
refer to the passage of time. RNNs can be applied to images.

Need not respect the notion of causality: the network may have
connections that go backward in time.

Like CNINs, essential to RNNs is parameter sharing — this enables
generalization across different sequence lengths/positions in time.

Example: “I started my PhD study at UW-Madison in 2020” and “In
2020, | started my PhD study at UW-Madison” have the same info.

Can be used in combination of ConvNet:

https://analyticsindiamag.com/overview-of-recurrent-neural-networks-and-their-applications/



Basic Idea

* Include cycles in computational graph which capture the influence
of the present value of a variable on its own value at a future step.

A — F(RD 2®). 9),
where h" represents the state (hidden), and x\¥ external signal.

iIndicates a delay of
a single time step

\
f f f o

Circuit Computational Graph
(c.f. biological neural network) (information flow in time)

output computed from A

f Unfold



Advantages of RNNs

 Regardless of the sequence length, the learned model always has the
same input size = generalization to different sequence lengths.

@ Q h(D) —g® (20 pED pt=2) @) H0)
f

=f(h\"" 2", 9).
specified in terms of transition from one state to another
state, rather than a variable-length history of states

 Parameter sharing: it is possible to use the same transition function
function f with the same parameters at every time step = learn a

single model, rather than a separate model for all possible time steps.

Any function involving recurrence can be considered a recurrent neural network.



RNN Types: Output at each time step

) — @0@

Unfold

RN
lh()\- -’lh()l
\/

Example: oY = b+ WA D L Uz®. Learnable parameters:
ht) = tanh(a(t)), b,c,U, V. W
o = c+Vh Gradient of loss function can be
g® = softmax(o®), computed by back propagation

through time (BBTT)



RNN Types: Output at # as input at 7 + 1

Less expressive, but may be easier to train because each time step can be trained
in isolation from the others, allowing greater parallelization during training.



RNN Types: Output after entire sequence




Teacher Forcing

Problem of hidden-to-hidden
recurrence: long computation & not
parallelizable as the computation is
sequential = Expensive to train

Output-to-hidden: not expressive.

Use ground truth output at 7 as
input at # + 1 for the training set.

Disadvantage: input that network
sees during training might be quite
different from that during testing.

Some models can be trained with
both teacher forcing and BBTT
randomly (Bengio et al, 2015)



Bidirectional RNNs

Example: speech recognition. Current sound
may depend on the next few sounds
(articulation, posing a question)

Another example: Handwriting recognition.

Combination of 2 RNNs: one moving forward
In time, another backward in time.

Generalization: multiple directions (e.g. 2D grid
up, down, left, right).

Compared with CNNs, RNNs applied to
iImages are typically more expensive but allow
for long-range lateral interactions between
features in the same feature map.

ee‘eeee
e'é‘e*
oforerere e



Deep RNNs

e Make each computation U, V, @ @
W deep. 0

* Replace “linear function” with

some deep network. “

* Problem: optimization more G‘
involved (not a priori clear
whether model is trainable). 0




Challenge of long-term dependencies

The recurrence relation can be described as matrix multiplication:

h(t) _ WTh(t—l) _ (Wt)T h(O)

Using the eigendecomposition of W:

W =QAQ'

The recurrence is amplified by the number of time steps:

h®) = QT A'QR\©
Let A be the eigenvalues of A, A < 1 (A > 1) = h" decays to zero
(explodes); hO not aligned with the largest eigenvector discarded.

Network trainable if gradient =~ 0O, gradient of long-term interaction «
gradient of a short-term interaction.



Gated RNNs

How to avoid difference between long- and short-term memory?
Idea: Create paths through time that neither vanish nor explode.
Change connection weights at each time step.

Idea: Once relevant information of past states has been used, forget
the old state. Use trainable parameters to decide when to do it.

LSTM-layer (long-short-term-memory-layer)



LSTM

. () _ f @) f o (t=1)
output Forget gate: fio=o0 (bi + Z Ui o5 + Z Wi ih; )
J J

Internal state update:

S,L(-t) = fz(t) SZ(-t_l) + gft)a (bz + Z U¢7j$§t) + Z Wz'7jh§-t1)>

J J

External input gate:

[ZV AR/ )

g = o [0+ U8 N W a Y
J J

self-loop
Output gate:

inpugj.> in h(t) — tanh (S(t)) q(t)

k W{/ \ 0’ =0 (bf SDMUTIEED Wi?jh§t1)>
j j

put gate forget gate output gate




Summary

Recurrent Neural Networks (RNNSs)
Teacher forcing

Bi-directional RNNs

Deep RNNs

Long term dependencies and gated recurrent units



