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Lecture 13: Unsupervised Learning



Recap of Lecture 12

Recurrent Neural Networks (RNNs)
Teacher forcing

Bi-directional RNNs

Deep RNNSs

Long term dependencies and gated recurrent units



Outline for today

* Unsupervised learning

e Challenges of High-dimensional data
e Principal component analysis (PCA)
e Multi-dimensional scaling (MDS)

e t-stochastic neighbor embedding (t-SNE)

References: 1803.08823, Deep Learning Book



Unsupervised Learning

Discovering structure in unlabelled data.

Two ways: 1) some appropriate numerical measure (e.g. distance
IN some representation space). 2) with visualizations.

Need to dimensionally reduce data as it is impractical for datasets
involving large number of measured features (e.g. images)

We call the dimensionally reduced space latent space.

By dimensional reduction we often loose information. This is not
necessarily bad. By loosing only irrelevant information, we can find
good representations.



Challenges of High-dimensional Data

High-dimensional data lives near the edge of sample space.
Consider data distributed uniformly at random in a D-dimensional

hypercube C = [—e/2,e/2]P. Probably of a data point inside a D-
dimensional hypersphere S of radius e/2 centered at the origin:

p(lIxll, < e/2) ~ (1/2)D — 0 exponentially as D — oo

Most of the data will concentrate outside the hypersphere, in the
corners of the hypercube.

Recall this property underlies properties of statistical systems such
as the Maxwell distribution.



Challenges of High-dimensional Data

Real-world data is usually not random or uniformly distributed
(data lives in a lower-dim. space compared with original space).

“Blessing of non-uniformity”: Data will typically be locally smooth
(local variation will not incur a change in the target variable).

Example: thermodynamics variables (temperature, pressure, etc)
are not sensitive to variations of the dynamical variables (position
and momentum of individual particles).

Obijective: preserve relative pairwise distances between data
points when going to latent space.



Challenges of High-dimensional Data

* Intrinsic dimensionality and the crowding problem:
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Intrinsic dim = min. # parameters
to parametrize the data.

Attempts to represent data in a space
with dim < intrinsic dimensionality
lead to a “crowding” problem.



Principal Component Analysis (PCA)

 Perform an orthogonal transformation of the data to find the
high variance directions & minimizing the error in projection.
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PCA — Minimizing Decoding Error

Suppose we have a collection of N points {x'1), ..., x™ in R".
Compress them into code vectors {c'V, ..., ¢™M} in Riwith [ < n
Encoding function: f(X) = ¢; Decoding function: X = g(c¢)
Encoding + decoding: X = g(f(X))

A measure of goodness for your compression is how accurate is
this encoding+decoding:

l|x —X|| <1 (good commpression)



PCA — Minimizing Decoding Error

Let g(¢) = Dec where D € R™!is a matrix defining the decoding.
Columns of D are orthogonal to each other and have unit norm.

Minimizing the loss: ¢* = argmin ||z — g(c)||

C

or equivalently (and more conveniently): ¢* = argmin|jz — g(c)||5

C

The function to be minimized: (z — g(¢)) (= — g(c))

T T

—az'z—x'g(c)—glc) +g(c)'

gle) =x'z—2z"g(c) + g(c) ' g(c)

Omit the first term which does not depend on c:

c* = argmin —2z ' g(c) + g(c) ' g(c)

C



PCA — Minimizing Decoding Error

e Using the definition of the decoding function:

c* = argmin —2x' Dc+¢' D' De
C

— argmin —2x' Dc + ¢' I;c
C

because the columns of D are orthogonal and have unit norm.

* The optimization problem has the solution:

Ve(—2x'Dc+c¢'e) =0
—2D'z+2c=0
c=D'"zx.
e The encoding function: f(z) =D 'x

e PCA reconstruction operation: r(z) =g (f (z)) = DD 'z



PCA — Minimizing Decoding Error

e Since we use the same matrix D to decode all the points, we
minimize the Frobenius norm of the matrix of errors computed over
all dimensions and all points:

2
D* = arg min Z ( @) _ r(x() ) subject to D' D = I;.
e Consider [ = 1 (generalization to other [, Ex 6), then D = d
d” = arg minz |2 — dd 2|2 subject to ||d||2 = 1.
d .

e Some cosmetic changes (noting d'x"is a scalar, and so its
transpose is equal to itself) give:

d" = argminz |2 — 2T dd]||2 subject to [|d||2 = 1.
d .



PCA — Minimizing Decoding Error
 Introduce compact notation by defining the matrix X:

X € RmXn X,;. = CB(z‘)T

9

 The decoding error is minimized when:
d* = argmin || X — Xdd'||% subject tod'd = 1.
d

* The Frobenius norm part:
.
argmin || X — Xdd'||% = arg min Tr ((X — deT) (X — deT>>
d d
—argminTr(X'X - X'Xdd" —dd' X" X +dd"X"Xdd")
d

— arw) ~Tr(X'Xdd') - Tr(dd' X' X) + Tr(dd' X' Xdd")

does not depend on d



PCA — Minimizing Decoding Error
e Cycle the order of the matrices inside a trace, the Frobenius norm:
— argmin —2Tr(X ' Xdd') + Tr(dd' X' Xdd")
d

— argmin —2Tr(X ' Xdd') + Tr(X ' Xdd'dd")
d

o The constraintd’d = 1 gives:
— argmin —2Tr(X ' Xdd'") + Tr(X ' Xdd') subject tod'd =1
d

 Thus minimizing decoding error is the same as maximizing variance:

— argmin — Tr(X ' Xdd') subject tod'd =1
d

= argmax Tr(X ' Xdd') subject tod'd =1
d

= argmax Tr(d' X' Xd) subject tod'd = 1.
d



PCA — Maximizing Variance

The covariance matrix of data matrix X is defined as:

1 T

2(X);; corresponds to the variance of the j-th feature while 2(X);;
measures the covariance (correlation) between feature 1 & feature .

Find a new basis that emphasizes highly variable directions while
reducing redundancy between basis vectors. Perform SVD:

. 1 T T
¥(X) = ——VsUTUsV

X = USV', ( % )VT

— "\NZ1
= vAVT.

The eigenvalues 4; of A are given by 4, = Sl-z/(N —1).



PCA — Maximizing Variance

To reduce the dimensionality of data from n to [, construct the n X [
projection matrix V, by selecting the singular components with the [
largest singular values. The projection is then

The singular vector with the largest singular value (largest variance)
IS the first principal component; the singular vector with the second
largest variance is the second principal component, etc.

Common in data visualization is to project on the first few principal
components (as long as a large part of the variance is explained in
those components, e.g., Ising Model).

Low explained variance may imply that the intrinsic dimensionality of
the data is high, or it cannot be captured by a linear representation.



Multidimensional Scaling (MDS)

Non-linear dimensional reduction technigue which preserves the
pairwise distance (or dissimilarity) dij between data points.

Metric MDS: the latent coordinates are obtained by minimizing:

Y =arg myin Z wij|dii(X) — dii(Y)],

i<j

Wij specifies the level of confidence (precision) in the value of dl-j(X).
If Euclidean metric is used, MDS=PCA; known as classical scaling.

MDS (metric or non-metric) is a generalization of PCA.

Non-metric MDS: dl-j can be any distance matrix that preserves the
ordination, i.e., if d;,(X) < d{;(X) then d;,(Y) < d;5(Y).



Multidimensional Scaling (MDS)

Both MDS and PCA can be implemented using standard Python
packages such as Scikit.

MDS algorithms have a scaling of O(N>) where N = # data points.

Sample-based methods can reduce this scaling to O(N log N).

PCA has a scaling of O(Np? + p?) for a complete decomposition.

A ™

computation of eigenvalue decomposition
covariance matrix where p = # features

Can be improved to give a O(Np? + p) scaling for PCA if only a few
principal components are desired.



t-SNE

t-stochastic neighbor embedding: non-parametric method that constructs
non-linear embeddings, optimized to preserve the local data structure.

Idea: associate a probability distribution to the neighborhood of each data:

_exp(—|lxi — xj||*/207)
Zk;&i exp(—||x; — xkl12/207) |

Pij pii = 0

o; are free bandwidth parameters determined by the local entropy:

H(p;)) = — ) _pjilog, pjj.
j

Setting H(p,)= constant, 2 = 2H(P) — perplexity determines o;. Points in
regions of high density will have small o..



t-SNE

e Gaussian likelihoods: only nearby points contribute
e Similarity of nearby points well represented

* Problem of outliers (exponentially vanishing contributions to the
distribution): embedding coordinates are ambiguous.

* The outliner problem can be avoided by symmetrization:

pl] (pzu + p]|1)/(2N)- = Z pl] 1/ ZN)

e t-SNE constructs a similar probability distribution in a lower
dimensional latent space:

G — (14 1lyi — yil1°)~!
DY (U i — w1




t-SNE

* Long tail distribution: preserves
short distance information while
strongly repelling two points that are  short-tail

far apart in the original space.

y; = arg myin Ip(xi) — q(y))

long-tail

e |atent space coordinates are found
by minimizing the KL divergence:

C(Y)=Dxl(p |l q) = Zpij log (%) Y1

y

e Equivalent to finding equilibrium
configuration of particles:

0C =) ApaiZilyi — ) — )_AGZyi— ),  whereZ = 1/(, (1+lye=yill>) ™).

j#i j#i _
attractive force comes only between

— Trepulsive,i; nearby points in the original space

— I'jttractive,i



Properties of t-SNE

Can rotate data: KL divergence is invariant under rotations in
latent space.

Results are stochastic: will depend on initial seed for gradient
descent.

Generally preserves short-distance information (preserves
ordination but not actual distance between points).

Deforms scales (not too much emphasis on the latent space)

Computationally expensive with a O(N?) scaling (can be
improved to O(N log N) using the Barnes-Hut method.



Performance

PCA-2 = 0.091
t-SNE 2
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Fig. 53. Different visualizations of a Gaussian mixture formed of K = 30 mixtures in a D = 40 dimensional space. The Gaussians have the same
covariance but have means drawn uniformly at random in the space [—10, 10]%°. (a) Plot of the first two coordinates. The labels of the different
Gaussian are indicated by the different colors. Note that in a realistic setting, label information is of course not available, thus making it very hard to
distinguish the different clusters. (b) Random projection of the data onto a 2 dimensional space. (c) Projection onto the first 2 principal components.
Only a small fraction of the variance is explained by those components (the ratio is indicated along the axis). (d) t-SNE embedding (perplexity =
60, # iteration = 1000) in a 2 dimensional latent space. t-SNE captures correctly the local structure of the data.



Performance
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Fig. 54. Visualization of the MNIST handwritten digits training dataset (here N = 60 000). (a) First two principal components. (b) t-SNE applied
with a perplexity of 30, a Barnes—Hut angle of 0.5 and 1000 gradient descent iterations. In order to reduce the noise and speed-up computation, PCA
was first applied to the dataset to project it down to 40 dimensions. We used an open-source implementation to produce the results (Linderman
et al.,, 2017), see https://github.com/KlugerLab/FIt-SNE.



t-SNE on GPU

e T-SNE is a great tool but quickly becomes slow to operate with
the sklearn implementation.

e Making T-SNE fast by putting it on the GPU:

https://medium.com/rapids-ai/tsne-with-gpus-hours-to-
seconds-9d9c17c941db



Applications

How much power is in your dimensions? MNIST: decay of
power in components of PCA.

Interpretability of first components: 2D Ising (magnetization)

Visualize which variables your neural network is using: apply
PCA (or other visualization methods) to different layers.
Remember, deeper layers use more abstract variables.

Disclaimer: this is a subset of visualizing techniques. If you face
a visualization problem which cannot be dealt with these
methods, take a more detailed look on available algorithms.



Summary

Unsupervised learning

Challenges of High-dimensional data
Principal component analysis (PCA)
Multi-dimensional scaling (MDS)

t-stochastic neighbor embedding (t-SNE)



