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Recap of Lecture 12

• Recurrent Neural Networks (RNNs)

• Teacher forcing

• Bi-directional RNNs

• Deep RNNs

• Long term dependencies and gated recurrent units



Outline for today

• Unsupervised learning

• Challenges of High-dimensional data

• Principal component analysis (PCA)

• Multi-dimensional scaling (MDS)

• t-stochastic neighbor embedding (t-SNE)

References: 1803.08823, Deep Learning Book



Unsupervised Learning

• Discovering structure in unlabelled data. 

• Two ways: 1) some appropriate numerical measure (e.g. distance 
in some representation space). 2) with visualizations. 

• Need to dimensionally reduce data as it is impractical for datasets 
involving large number of measured features (e.g. images)

• We call the dimensionally reduced space latent space.

• By dimensional reduction we often loose information. This is not 
necessarily bad. By loosing only irrelevant information, we can find 
good representations.



Challenges of High-dimensional Data

• High-dimensional data lives near the edge of sample space. 

• Consider data distributed uniformly at random in a D-dimensional 
hypercube . Probably of a data point inside a D-
dimensional hypersphere  of radius  centered at the origin:

• Most of the data will concentrate outside the hypersphere, in the 
corners of the hypercube. 

• Recall this property underlies properties of statistical systems such 
as the Maxwell distribution.

C = [−e/2,e/2]D

S e/2
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12. Dimensional reduction and data visualization

Unsupervised learning is concerned with discovering structure in unlabeled data. In this section, we will begin our foray
into unsupervised learning by way of data visualization. Data visualization methods are important for modeling as they
can be used to identify correlated or redundant features along with irrelevant features (noise) from raw or processed data.
Conceivably, being able to identify and capture such characteristics in a dataset can help in designing better predictive
models. For data involving a relatively small number of features, studying pair-wise correlations (i.e. pairwise scatter plots
of all features) may suffice in performing a complete analysis. This rapidly becomes impractical for datasets involving a
large number of measured featured (such as images). Thus, in practice, we often have to perform dimensional reduction,
namely, project or embed the data onto a lower dimensional space, which we refer to as the latent space. As we will
discuss, part of the complication of dimensional reduction lies in the fact that low-dimensional representations of high-
dimensional data necessarily incurs information lost. Below, we introduce some common linear and nonlinear methods
for performing dimensional reduction with applications in data visualization of high-dimensional data.

12.1. Some of the challenges of high-dimensional data

Before we begin exploring some specific dimensional reduction techniques, it is useful to highlight some of the generic
difficulties encountered when dealing with high-dimensional data.

a. High-dimensional data lives near the edge of sample space. Geometry in high-dimensional space can be counterintuitive.
One example that is pertinent to machine learning is the following. Consider data distributed uniformly at random in a
D-dimensional hypercube C = [�e/2, e/2]D, where e is the edge length. Consider also a D-dimensional hypersphere S of
radius e/2 centered at the origin and contained within C. The probability that a data point x drawn uniformly at random
in C is contained within S is well approximated by the ratio of the volume of S to that of C : p(kxk2 < e/2) ⇠ (1/2)D. Thus,
as the dimension of the feature space D increases, p goes to zero exponentially fast. In other words, most of the data will
concentrate outside the hypersphere, in the corners of the hypercube. In physics, this basic observation underlies many
properties of ideal gases such as the Maxwell distribution and the equipartition theorem (see Chapter 3 of (Sethna, 2006)
for instance).

b. Real-world data vs. uniform distribution. Fortunately, real-world data is not random or uniformly distributed! In fact, real
data usually lives in a much lower dimensional space than the original space in which the features are being measured.
This is sometimes referred to as the ‘‘blessing of non-uniformity’’ (in opposition to the curse of dimensionality). Data will
typically be locally smooth, meaning that a local variation of the data will not incur a change in the target variable (Bishop,
2006). This idea is central to statistical physics and field theories, where properties of systems with an astronomical
number of degrees of freedom can be well characterized by low-dimensional ‘‘order parameters’’ or effective degrees
of freedom. Another instantiation of this idea is manifest in the description of the bulk properties of a gas of weakly
interacting particles, which can be simply described by the thermodynamic variables (temperature, pressure, etc.) that
enter the equation of state rather than the enormous number of dynamical variables (i.e. position and momentum) of
each particle in the gas.

c. Intrinsic dimensionality and the crowding problem. A recurrent objective of dimensional reduction techniques is to
preserve the relative pairwise distances (or defined similarities) between data points from the original space to the latent
space. This is a natural requirement, since we would like for nearby data points (as measured in the original space) to
remain close-by after the corresponding mapping to the latent space.

Consider the example of the ‘‘Swiss roll’’ presented in Fig. 48a. There, the relevant structure of the data corresponds
to nearby points with similar colors and is encoded in the ‘‘unrolled’’ data in the latent space, see Fig. 48b. Clearly, in this
example a two-dimensional space is sufficient to capture almost the entirety of the information in the data. A concept
which stems from signal processing that is relevant to our current exposition is that of the intrinsic dimensionality
of the data. Qualitatively, it refers to the minimum number of dimensions required to capture the signal in the data.
In the case of the Swiss roll, it is 2 since the Swiss roll can effectively be parametrized using only two parameters,
i.e. X 2 {(x1 sin(x1), x1 cos(x1), x2)}. The minimum number of parameters required for such a parametrization is the
intrinsic dimensionality of the data (Bennett, 1969). Attempting to represent data in a space of dimensionality lower
than its intrinsic dimensionality can lead to a ‘‘crowding’’ problem (Maaten and Hinton, 2008) (see schematic, Fig. 49). In
short, because we are attempting to satisfy too many constraints (e.g. preserve all relative distances of the original space),
this results in a trivial solution for the latent space where all mapped data points collapse to the center of the map.

To alleviate this, one needs to weaken the constraints imposed on the visualization scheme. Powerful methods such as
t-distributed stochastic embedding (Maaten and Hinton, 2008) (in short, t-SNE, see Section 12.4) and uniform manifold
approximation and projection (UMAP) (McInnes et al., 2018) have been devised to circumvent this issue in various ways.

→ 0 exponentially as D → ∞



Challenges of High-dimensional Data

• Real-world data is usually not random or uniformly distributed 
(data lives in a lower-dim. space compared with original space).

• “Blessing of non-uniformity”: Data will typically be locally smooth 
(local variation will not incur a change in the target variable).

• Example: thermodynamics variables (temperature, pressure, etc) 
are not sensitive to variations of the dynamical variables (position 
and momentum of individual particles).

• Objective: preserve relative pairwise distances between data 
points when going to latent space. 
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Fig. 48. The ‘‘Swiss roll’’. Data distributed in a three-dimensional space (a) that can effectively be described on a two-dimensional surface (b). A
common goal of dimensional reduction techniques is to preserve ordination in the data: points that are close-by in the original space are also
near-by in the mapped (latent) space. This is true of the mapping (a) to (b) as can be seen by inspecting the color gradient.

Fig. 49. Illustration of the crowding problem. (Left) A two-dimensional dataset X consisting of 3 equidistant points. (Right) Mapping X to a
one-dimensional space while trying to preserve relative distances leads to a collapse of the mapped data points.

12.2. Principal component analysis (PCA)

A ubiquitous method for dimensional reduction, data visualization and analysis is Principal Component Analysis (PCA).
The goal of PCA is to perform an orthogonal transformation of the data in order to find high-variance directions. PCA is
inspired by the observation that in many cases, the relevant information in a signal is contained in the directions with
largest13 variance (see Fig. 50). Directions with small variance are ascribed to ‘‘noise’’ and can potentially be removed or
ignored.

Surprisingly, such PCA-based projections often capture a lot of the large scale structure of many datasets. For example,
Fig. 51 shows the projection of samples drawn from the 2D Ising model at various temperatures on the first two principal
components. Despite living in a 1600 dimensional space (the samples are 40 ⇥ 40 spin configurations), a single principal
component (i.e. a single direction in this 1600 dimensional space) can capture 50% of the variability contained in our
samples. In fact, one can verify that this direction weights all 1600 spins nearly equally and thus corresponds to the
magnetization order parameter. Thus, even without any prior physical knowledge, one can extract relevant order param-
eters using a simple PCA-based projection. Recently, a correspondence between PCA and Renormalization Group flows
across the phase transition in the 2D Ising model (Foreman et al., 2017) and in a more general setting (Bradde and Bialek,
2017) has been proposed. In statistical physics, PCA has also found application in detecting phase transitions (Wetzel,
2017), e.g. in the XY model on frustrated triangular and union jack lattices (Wang and Zhai, 2017). PCA was also used
to classify dislocation patterns in crystals (Papanikolaou et al., 2017; Wang and Zhai, 2018), and to find correlations in
the shear flow of athermal amorphous solids (Ruscher and Rottler, 2018). PCA is widely employed in biological physics
when working with high-dimensional data. Physics has also inspired PCA-based algorithms to infer relevant features in
unlabeled data (Bény, 2018). Concretely, consider N data points, {x1, . . . xN} that live in a p-dimensional feature space
Rp. Without loss of generality, we assume that the empirical mean x̄ = N�1

P
i xi of these data points is zero.14 Denote

the N ⇥ p design matrix as X = [x1, x2, . . . ; xN ]T whose rows are the data points and columns correspond to different
features. The p⇥ p (symmetric) covariance matrix is therefore

⌃ (X) =
1

N � 1
X TX . (129)

13 This assumes that the features are measured and compared using the same units.
14 We can always center around the mean: x̄. xi � x̄

Intrinsic dim = min. # parameters
 to parametrize the data.

Attempts to represent data in a space 
with dim < intrinsic dimensionality

lead to a “crowding” problem.



Principal Component Analysis (PCA)

• Perform an orthogonal transformation of the data to find the 
high variance directions ⇔ minimizing the error in projection.
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Fig. 50. PCA seeks to find the set of orthogonal directions with largest variance. This can be seen as ‘‘fitting’’ an ellipse to the data with the major
axis corresponding to the first principal component (direction of largest variance). PCA assumes that directions with large variance correspond to
the true signal in the data while directions with low variance correspond to noise.

Fig. 51. (a) The first 2 principal components of the Ising dataset with temperature indicated by the coloring. PCA was performed on a joined dataset
of 1000 samples taken at each temperatures T = 0.25, 0.5, . . . , 4.0. Almost all the variance is explained in the first component which corresponds to
the magnetization order parameter (linear combination of the features with weights all roughly equal). The paramagnetic phase corresponds to the
middle cluster and the left and right clusters correspond to the symmetry-related ferromagnetic phases. (b) Log of the spectrum of the covariance
matrix versus rank ordering. Only one dimension has high-variance.
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Ising Model



PCA — Minimizing Decoding Error

• Suppose we have a collection of  points  in .

• Compress them into code vectors  in  with 

• Encoding function: ; Decoding function: 

• Encoding + decoding: 

• A measure of goodness for your compression is how accurate is 
this encoding+decoding:

N {x(1), …, x(N)} ℝn

{c(1), …, c(N)} ℝl l < n

f(x) = c x = g(c)

x̃ = g( f(x))

| |x − x̃ | | ≪ 1 (good commpression)



PCA — Minimizing Decoding Error

• Let  where  is a matrix defining the decoding. 

• Columns of  are orthogonal to each other and have unit norm.

• Minimizing the loss: 

 or equivalently (and more conveniently):

• The function to be minimized:

• Omit the first term which does not depend on :

g(c) = Dc D ∈ ℝn×l

D

c

CHAPTER 2

Computing the optimal code for this decoder could be a difficult problem. To
keep the encoding problem easy, PCA constrains the columns of D to be orthogonal
to each other. (Note that D is still not technically “an orthogonal matrix” unless
l = n.)

With the problem as described so far, many solutions are possible, because we
can increase the scale of D:,i if we decrease ci proportionally for all points. To give
the problem a unique solution, we constrain all the columns of D to have unit
norm.

In order to turn this basic idea into an algorithm we can implement, the first
thing we need to do is figure out how to generate the optimal code point c⇤ for
each input point x. One way to do this is to minimize the distance between the
input point x and its reconstruction, g(c⇤). We can measure this distance using a
norm. In the principal components algorithm, we use the L2 norm:

c⇤ = arg min
c

||x� g(c)||2. (2.54)

We can switch to the squared L2 norm instead of using the L2 norm itself
because both are minimized by the same value of c. Both are minimized by the
same value of c because the L2 norm is non-negative and the squaring operation is
monotonically increasing for non-negative arguments.

c⇤ = arg min
c

||x� g(c)||22. (2.55)

The function being minimized simplifies to

(x� g(c))>(x� g(c)) (2.56)

(by the definition of the L2 norm, equation 2.30)

= x>x� x>g(c)� g(c)>x + g(c)>g(c) (2.57)

(by the distributive property)

= x>x� 2x>g(c) + g(c)>g(c) (2.58)

(because the scalar g(c)>x is equal to the transpose of itself).
We can now change the function being minimized again, to omit the first term,

since this term does not depend on c:

c⇤ = arg min
c

�2x>g(c) + g(c)>g(c). (2.59)
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PCA — Minimizing Decoding Error

• Using the definition of the decoding function:

 because the columns of D are orthogonal and have unit norm.

• The optimization problem has the solution:

• The encoding function:

• PCA reconstruction operation:

LINEAR ALGEBRA

To make further progress, we must substitute in the definition of g(c):

c⇤ = arg min
c

�2x>Dc + c>D>Dc (2.60)

= arg min
c

�2x>Dc + c>Ilc (2.61)

(by the orthogonality and unit norm constraints on D)

= arg min
c

�2x>Dc + c>c. (2.62)

We can solve this optimization problem using vector calculus (see section 4.3 if
you do not know how to do this):

rc(�2x>Dc + c>c) = 0 (2.63)

� 2D>x + 2c = 0 (2.64)

c = D>x. (2.65)

This makes the algorithm efficient: we can optimally encode x using just a
matrix-vector operation. To encode a vector, we apply the encoder function

f(x) = D>x. (2.66)

Using a further matrix multiplication, we can also define the PCA reconstruction
operation:

r(x) = g (f (x)) = DD>x. (2.67)

Next, we need to choose the encoding matrix D. To do so, we revisit the idea
of minimizing the L2 distance between inputs and reconstructions. Since we will
use the same matrix D to decode all the points, we can no longer consider the
points in isolation. Instead, we must minimize the Frobenius norm of the matrix
of errors computed over all dimensions and all points:

D⇤ = arg min
D

sX

i,j

⇣
x(i)

j � r(x(i))j

⌘2
subject to D>D = Il. (2.68)

To derive the algorithm for finding D⇤, we start by considering the case where
l = 1. In this case, D is just a single vector, d. Substituting equation 2.67 into
equation 2.68 and simplifying D into d, the problem reduces to

d⇤ = arg min
d

X

i

||x(i) � dd>x(i)||22 subject to ||d||2 = 1. (2.69)
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matrix-vector operation. To encode a vector, we apply the encoder function

f(x) = D>x. (2.66)

Using a further matrix multiplication, we can also define the PCA reconstruction
operation:

r(x) = g (f (x)) = DD>x. (2.67)

Next, we need to choose the encoding matrix D. To do so, we revisit the idea
of minimizing the L2 distance between inputs and reconstructions. Since we will
use the same matrix D to decode all the points, we can no longer consider the
points in isolation. Instead, we must minimize the Frobenius norm of the matrix
of errors computed over all dimensions and all points:
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PCA — Minimizing Decoding Error

• Since we use the same matrix  to decode all the points, we 
minimize the Frobenius norm of the matrix of errors computed over 
all dimensions and all points:  

• Consider  (generalization to other , Ex 6), then 

• Some cosmetic changes (noting  is a scalar, and so its 
transpose is equal to itself) give:

D

l = 1 l D = d

dTx(i)
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The above formulation is the most direct way of performing the substitution but
is not the most stylistically pleasing way to write the equation. It places the scalar
value d>x(i) on the right of the vector d. Scalar coefficients are conventionally
written on the left of vector they operate on. We therefore usually write such a
formula as

d⇤ = arg min
d

X

i

||x(i) � d>x(i)d||22 subject to ||d||2 = 1, (2.70)

or, exploiting the fact that a scalar is its own transpose, as

d⇤ = arg min
d

X

i

||x(i) � x(i)>dd||22 subject to ||d||2 = 1. (2.71)

The reader should aim to become familiar with such cosmetic rearrangements.
At this point, it can be helpful to rewrite the problem in terms of a single

design matrix of examples, rather than as a sum over separate example vectors.
This will enable us to use more compact notation. Let X 2 Rm⇥n be the matrix
defined by stacking all the vectors describing the points, such that Xi,: = x(i)> .
We can now rewrite the problem as

d⇤ = arg min
d

||X �Xdd>||2F subject to d>d = 1. (2.72)

Disregarding the constraint for the moment, we can simplify the Frobenius norm
portion as follows:

arg min
d

||X �Xdd>||2F (2.73)

= arg min
d

Tr
✓⇣

X �Xdd>
⌘> ⇣

X �Xdd>
⌘◆

(2.74)

(by equation 2.49)

= arg min
d

Tr(X>X �X>Xdd> � dd>X>X + dd>X>Xdd>) (2.75)

= arg min
d

Tr(X>X)� Tr(X>Xdd>)� Tr(dd>X>X) + Tr(dd>X>Xdd>)

(2.76)
= arg min

d
�Tr(X>Xdd>)� Tr(dd>X>X) + Tr(dd>X>Xdd>) (2.77)

(because terms not involving d do not affect the arg min)

= arg min
d

�2 Tr(X>Xdd>) + Tr(dd>X>Xdd>) (2.78)
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PCA — Minimizing Decoding Error

• Introduce compact notation by defining the matrix :

• The decoding error is minimized when:

• The Frobenius norm part:

X
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PCA — Minimizing Decoding Error
• Cycle the order of the matrices inside a trace, the Frobenius norm:

• The constraint  gives:

• Thus minimizing decoding error is the same as maximizing variance:

dTd = 1

CHAPTER 2
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(because we can cycle the order of the matrices inside a trace, equation 2.52)

= arg min
d

�2 Tr(X>Xdd>) + Tr(X>Xdd>dd>) (2.79)

(using the same property again).
At this point, we reintroduce the constraint:

arg min
d

�2 Tr(X>Xdd>) + Tr(X>Xdd>dd>) subject to d>d = 1 (2.80)

= arg min
d

�2 Tr(X>Xdd>) + Tr(X>Xdd>) subject to d>d = 1 (2.81)

(due to the constraint)

= arg min
d

�Tr(X>Xdd>) subject to d>d = 1 (2.82)

= arg max
d

Tr(X>Xdd>) subject to d>d = 1 (2.83)

= arg max
d

Tr(d>X>Xd) subject to d>d = 1. (2.84)

This optimization problem may be solved using eigendecomposition. Specifically,
the optimal d is given by the eigenvector of X>X corresponding to the largest
eigenvalue.

This derivation is specific to the case of l = 1 and recovers only the first
principal component. More generally, when we wish to recover a basis of principal
components, the matrix D is given by the l eigenvectors corresponding to the
largest eigenvalues. This may be shown using proof by induction. We recommend
writing this proof as an exercise.

Linear algebra is one of the fundamental mathematical disciplines necessary to
understanding deep learning. Another key area of mathematics that is ubiquitous
in machine learning is probability theory, presented next.
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Fig. 48. The ‘‘Swiss roll’’. Data distributed in a three-dimensional space (a) that can effectively be described on a two-dimensional surface (b). A
common goal of dimensional reduction techniques is to preserve ordination in the data: points that are close-by in the original space are also
near-by in the mapped (latent) space. This is true of the mapping (a) to (b) as can be seen by inspecting the color gradient.

Fig. 49. Illustration of the crowding problem. (Left) A two-dimensional dataset X consisting of 3 equidistant points. (Right) Mapping X to a
one-dimensional space while trying to preserve relative distances leads to a collapse of the mapped data points.

12.2. Principal component analysis (PCA)

A ubiquitous method for dimensional reduction, data visualization and analysis is Principal Component Analysis (PCA).
The goal of PCA is to perform an orthogonal transformation of the data in order to find high-variance directions. PCA is
inspired by the observation that in many cases, the relevant information in a signal is contained in the directions with
largest13 variance (see Fig. 50). Directions with small variance are ascribed to ‘‘noise’’ and can potentially be removed or
ignored.

Surprisingly, such PCA-based projections often capture a lot of the large scale structure of many datasets. For example,
Fig. 51 shows the projection of samples drawn from the 2D Ising model at various temperatures on the first two principal
components. Despite living in a 1600 dimensional space (the samples are 40 ⇥ 40 spin configurations), a single principal
component (i.e. a single direction in this 1600 dimensional space) can capture 50% of the variability contained in our
samples. In fact, one can verify that this direction weights all 1600 spins nearly equally and thus corresponds to the
magnetization order parameter. Thus, even without any prior physical knowledge, one can extract relevant order param-
eters using a simple PCA-based projection. Recently, a correspondence between PCA and Renormalization Group flows
across the phase transition in the 2D Ising model (Foreman et al., 2017) and in a more general setting (Bradde and Bialek,
2017) has been proposed. In statistical physics, PCA has also found application in detecting phase transitions (Wetzel,
2017), e.g. in the XY model on frustrated triangular and union jack lattices (Wang and Zhai, 2017). PCA was also used
to classify dislocation patterns in crystals (Papanikolaou et al., 2017; Wang and Zhai, 2018), and to find correlations in
the shear flow of athermal amorphous solids (Ruscher and Rottler, 2018). PCA is widely employed in biological physics
when working with high-dimensional data. Physics has also inspired PCA-based algorithms to infer relevant features in
unlabeled data (Bény, 2018). Concretely, consider N data points, {x1, . . . xN} that live in a p-dimensional feature space
Rp. Without loss of generality, we assume that the empirical mean x̄ = N�1

P
i xi of these data points is zero.14 Denote

the N ⇥ p design matrix as X = [x1, x2, . . . ; xN ]T whose rows are the data points and columns correspond to different
features. The p⇥ p (symmetric) covariance matrix is therefore

⌃ (X) =
1

N � 1
X TX . (129)

13 This assumes that the features are measured and compared using the same units.
14 We can always center around the mean: x̄. xi � x̄
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Notice that the jth diagonal entry of ⌃ (X) corresponds to the variance of the jth feature and ⌃ (X)ij measures the
covariance (i.e. connected correlation in the language of physics) between feature i and feature j.

We are interested in finding a new basis for the data that emphasizes highly variable directions while reducing
redundancy between basis vectors. In particular, we will look for a linear transformation that reduces the covariance
between different features. To do so, we first perform singular value decomposition (SVD) on the design matrix X , namely,
X = USV T , where S is a diagonal matrix of singular value si, the orthogonal matrix U contains (as its columns) the left
singular vectors of X , and similarly V contains (as its columns) the right singular vectors of X . With this, one can rewrite
the covariance matrix as

⌃ (X) =
1

N � 1
VSU TUSV T

= V
✓

S2

N � 1

◆
V T

⌘ V⇤V T . (130)

where ⇤ is a diagonal matrix with eigenvalues �i in the decreasing order along the diagonal (i.e. eigendecomposition). It
is clear that the right singular vectors of X (i.e. the columns of V ) are principal directions of ⌃ (X), and the singular values
of X are related to the eigenvalues of the covariance matrix ⌃ (X) via �i = s2i /(N � 1). To reduce the dimensionality of
data from p to p̃ < p, we first construct the p ⇥ p̃ projection matrix Ṽ p0 by selecting the singular components with the p̃
largest singular values. The projection of the data from p to a p̃ dimensional space is simply Ỹ = XṼ p0 . The same idea is
central to matrix-product-state-like techniques used to compress the number of components in quantum wavefunctions
in studies of low-dimensional many-body lattice systems.

The singular vector with the largest singular value (i.e the largest variance) is referred to as the first principal
component; the singular vector with the second largest singular value as the second principal component, and so on.
An important quantity is the ratio �i/

Pp
i=1 �i which is referred as the percentage of the explained variance contained in

a principal component (see Fig. 51.b).
It is common in data visualization to present the data projected on the first few principal components. This is valid

as long as a large part of the variance is explained in those components. Low values of explained variance may imply
that the intrinsic dimensionality of the data is high or simply that it cannot be captured by a linear representation. For a
detailed introduction to PCA, see the tutorials by Shlens (Shlens, 2014) and Bishop (Bishop, 2006).

12.3. Multidimensional scaling

Multidimensional scaling (MDS) is a non-linear dimensional reduction technique which preserves the pairwise
distance or dissimilarity dij between data points (Cox and Cox, 2000). Moving forward, we use the term ‘‘distance’’
and ‘‘dissimilarity’’ interchangeably. There are two types of MDS: metric and non-metric. In metric MDS, the distance
is computed under a pre-defined metric and the latent coordinates Ỹ are obtained by minimizing the difference between
the distance measured in the original space (dij(X)) and that in the latent space (dij(Y )):

Ỹ = argmin
Y

X

i<j

wij|dij(X) � dij(Y )|, (131)

where wij � 0 are weight values. The weight matrix wij is a set of free parameters that specify the level of confidence
(or precision) in the value of dij(X). If Euclidean metric is used, MDS gives the same result as PCA and is usually referred
to as classical scaling (Torgerson, 1958). Thus MDS is often considered as a generalization of PCA. In non-metric MDS, dij
can be any distance matrix. The objective function is then to preserve the ordination in the data, i.e. if d12(X) < d13(X)
in the original space, then in the latent space we should have d12(Y ) < d13(Y ).

Both MDS and PCA can be implemented using standard Python packages such as Scikit. MDS algorithms typically have
a scaling of O(N3) where N corresponds to the number of data points, and are thus very limited in their application to
large datasets. However, sample-based methods have been introduce to reduce this scaling to O(N logN) (Yang et al.,
2006). In the case of PCA, a complete decomposition has a scaling of O(Np2 + p3), where p is the number of features.
Note that the first term Np2 is due to the computation of covariance matrix Eq. (129) while the second, p3, stems from
eigenvalue decomposition. Note that PCA can be improved to bear complexity O(Np2 + p) if only the first few principal
components are desired (using iterative approaches). PCA and MDS are often among the first data visualization techniques
one resorts to.

12.4. t-SNE

It is often desirable to preserve local structures in high-dimensional datasets. However, when dealing with datasets
having clusters delimitated by complicated surfaces or datasets with a large number of clusters, preserving local structures
becomes difficult using linear techniques such as PCA. Many non-linear techniques such as non-classical MDS (Cox and
Cox, 2000), self-organizing map (Kohonen, 1998), Isomap (Tenenbaum et al., 2000) and Locally Linear Embedding (Roweis
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the distance measured in the original space (dij(X)) and that in the latent space (dij(Y )):
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and Saul, 2000) have been proposed and to address this class of problems. These techniques are generally good at
preserving local structures in the data but typically fail to capture structures at the larger scale such as the clusters in
which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
dimensional training point is mapped to low-dimensional embedding coordinates, which are optimized in a way to
preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure of high-dimensional
datasets while at the same time preserving locality. In physics, t-SNE has recently been used to reduce the dimensionality
and classify spin configurations, generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,
2017) and Fermi–Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also applied to study clustering
transitions in glass-like problems in the context of quantum control (Day et al., 2019).

The idea of stochastic neighbor embedding is to associate a probability distribution to the neighborhood of each data
(note x 2 Rp, p is the number of features):

pi|j =
exp(�||xi � xj||2/2� 2

i )P
k6=i exp(�||xi � xk||2/2� 2

i )
, (132)

where pi|j can be interpreted as the likelihood that xj is xi’s neighbor (thus we take pi|i = 0). �i are free bandwidth
parameters that are usually determined by fixing the local entropy H(pi) of each data point:

H(pi) ⌘ �

X

j

pj|i log2 pj|i. (133)

The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
distribution pij ⌘ (pi|j + pj|i)/(2N). This guarantees that

P
j pij > 1/(2N) for all data points xi, resulting in each data point

xi making a significant contribution to the cost function to be defined below.
t-SNE constructs a similar probability distribution qij in a low dimensional latent space (with coordinates Y = {yi}, yi 2

Rp0 , where p0 < p is the dimension of the latent space):

qij =
(1 + ||yi � yj||2)�1

P
k6=i(1 + ||yi � yk||2)�1 . (134)

The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
(relative neighborhoods) while strongly repelling two points that are far apart in the original space (see Fig. 52). In order
to find the latent space coordinates yi, t-SNE minimizes the Kullback–Leibler divergence between qij and pij:

C(Y ) = DKL(p k q) ⌘

X

ij

pij log
✓
pij
qij

◆
. (135)

This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:
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which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
dimensional training point is mapped to low-dimensional embedding coordinates, which are optimized in a way to
preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure of high-dimensional
datasets while at the same time preserving locality. In physics, t-SNE has recently been used to reduce the dimensionality
and classify spin configurations, generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,
2017) and Fermi–Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also applied to study clustering
transitions in glass-like problems in the context of quantum control (Day et al., 2019).

The idea of stochastic neighbor embedding is to associate a probability distribution to the neighborhood of each data
(note x 2 Rp, p is the number of features):
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where pi|j can be interpreted as the likelihood that xj is xi’s neighbor (thus we take pi|i = 0). �i are free bandwidth
parameters that are usually determined by fixing the local entropy H(pi) of each data point:
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The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.
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While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
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distribution pij ⌘ (pi|j + pj|i)/(2N). This guarantees that
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The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
(relative neighborhoods) while strongly repelling two points that are far apart in the original space (see Fig. 52). In order
to find the latent space coordinates yi, t-SNE minimizes the Kullback–Leibler divergence between qij and pij:
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This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:
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k6=i(1+||yk�yi||2)�1). We have separated the gradient of point yi into an attractive Fattractive and repulsive
term Frepulsive. Notice that Fattractive,i induces a significant attractive force only between points that are nearby point i in
the original space since it involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the
equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the latent space, since it only depends on the
distance between points. For this reason, t-SNE plots that are rotations of each other should be considered equivalent.
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preserving local structures in the data but typically fail to capture structures at the larger scale such as the clusters in
which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
dimensional training point is mapped to low-dimensional embedding coordinates, which are optimized in a way to
preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure of high-dimensional
datasets while at the same time preserving locality. In physics, t-SNE has recently been used to reduce the dimensionality
and classify spin configurations, generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,
2017) and Fermi–Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also applied to study clustering
transitions in glass-like problems in the context of quantum control (Day et al., 2019).
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parameters that are usually determined by fixing the local entropy H(pi) of each data point:
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The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
distribution pij ⌘ (pi|j + pj|i)/(2N). This guarantees that
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This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:
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k6=i(1+||yk�yi||2)�1). We have separated the gradient of point yi into an attractive Fattractive and repulsive
term Frepulsive. Notice that Fattractive,i induces a significant attractive force only between points that are nearby point i in
the original space since it involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the
equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the latent space, since it only depends on the
distance between points. For this reason, t-SNE plots that are rotations of each other should be considered equivalent.
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and Saul, 2000) have been proposed and to address this class of problems. These techniques are generally good at
preserving local structures in the data but typically fail to capture structures at the larger scale such as the clusters in
which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
dimensional training point is mapped to low-dimensional embedding coordinates, which are optimized in a way to
preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure of high-dimensional
datasets while at the same time preserving locality. In physics, t-SNE has recently been used to reduce the dimensionality
and classify spin configurations, generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,
2017) and Fermi–Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also applied to study clustering
transitions in glass-like problems in the context of quantum control (Day et al., 2019).

The idea of stochastic neighbor embedding is to associate a probability distribution to the neighborhood of each data
(note x 2 Rp, p is the number of features):

pi|j =
exp(�||xi � xj||2/2� 2
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where pi|j can be interpreted as the likelihood that xj is xi’s neighbor (thus we take pi|i = 0). �i are free bandwidth
parameters that are usually determined by fixing the local entropy H(pi) of each data point:
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The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
distribution pij ⌘ (pi|j + pj|i)/(2N). This guarantees that

P
j pij > 1/(2N) for all data points xi, resulting in each data point

xi making a significant contribution to the cost function to be defined below.
t-SNE constructs a similar probability distribution qij in a low dimensional latent space (with coordinates Y = {yi}, yi 2
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The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
(relative neighborhoods) while strongly repelling two points that are far apart in the original space (see Fig. 52). In order
to find the latent space coordinates yi, t-SNE minimizes the Kullback–Leibler divergence between qij and pij:
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This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:
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where Zi = 1/(
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k6=i(1+||yk�yi||2)�1). We have separated the gradient of point yi into an attractive Fattractive and repulsive
term Frepulsive. Notice that Fattractive,i induces a significant attractive force only between points that are nearby point i in
the original space since it involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the
equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the latent space, since it only depends on the
distance between points. For this reason, t-SNE plots that are rotations of each other should be considered equivalent.

15 It does not explicitly parametrize feature extraction required to compute the embedding coordinates. Thus it cannot be applied to find the
coordinate of new data points.
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and Saul, 2000) have been proposed and to address this class of problems. These techniques are generally good at
preserving local structures in the data but typically fail to capture structures at the larger scale such as the clusters in
which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
dimensional training point is mapped to low-dimensional embedding coordinates, which are optimized in a way to
preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure of high-dimensional
datasets while at the same time preserving locality. In physics, t-SNE has recently been used to reduce the dimensionality
and classify spin configurations, generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,
2017) and Fermi–Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also applied to study clustering
transitions in glass-like problems in the context of quantum control (Day et al., 2019).

The idea of stochastic neighbor embedding is to associate a probability distribution to the neighborhood of each data
(note x 2 Rp, p is the number of features):

pi|j =
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where pi|j can be interpreted as the likelihood that xj is xi’s neighbor (thus we take pi|i = 0). �i are free bandwidth
parameters that are usually determined by fixing the local entropy H(pi) of each data point:
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The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
distribution pij ⌘ (pi|j + pj|i)/(2N). This guarantees that

P
j pij > 1/(2N) for all data points xi, resulting in each data point

xi making a significant contribution to the cost function to be defined below.
t-SNE constructs a similar probability distribution qij in a low dimensional latent space (with coordinates Y = {yi}, yi 2
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The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
(relative neighborhoods) while strongly repelling two points that are far apart in the original space (see Fig. 52). In order
to find the latent space coordinates yi, t-SNE minimizes the Kullback–Leibler divergence between qij and pij:
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This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:
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k6=i(1+||yk�yi||2)�1). We have separated the gradient of point yi into an attractive Fattractive and repulsive
term Frepulsive. Notice that Fattractive,i induces a significant attractive force only between points that are nearby point i in
the original space since it involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the
equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the latent space, since it only depends on the
distance between points. For this reason, t-SNE plots that are rotations of each other should be considered equivalent.
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and Saul, 2000) have been proposed and to address this class of problems. These techniques are generally good at
preserving local structures in the data but typically fail to capture structures at the larger scale such as the clusters in
which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
dimensional training point is mapped to low-dimensional embedding coordinates, which are optimized in a way to
preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure of high-dimensional
datasets while at the same time preserving locality. In physics, t-SNE has recently been used to reduce the dimensionality
and classify spin configurations, generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,
2017) and Fermi–Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also applied to study clustering
transitions in glass-like problems in the context of quantum control (Day et al., 2019).

The idea of stochastic neighbor embedding is to associate a probability distribution to the neighborhood of each data
(note x 2 Rp, p is the number of features):
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where pi|j can be interpreted as the likelihood that xj is xi’s neighbor (thus we take pi|i = 0). �i are free bandwidth
parameters that are usually determined by fixing the local entropy H(pi) of each data point:
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The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
distribution pij ⌘ (pi|j + pj|i)/(2N). This guarantees that

P
j pij > 1/(2N) for all data points xi, resulting in each data point

xi making a significant contribution to the cost function to be defined below.
t-SNE constructs a similar probability distribution qij in a low dimensional latent space (with coordinates Y = {yi}, yi 2
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The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
(relative neighborhoods) while strongly repelling two points that are far apart in the original space (see Fig. 52). In order
to find the latent space coordinates yi, t-SNE minimizes the Kullback–Leibler divergence between qij and pij:
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This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:
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where Zi = 1/(
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k6=i(1+||yk�yi||2)�1). We have separated the gradient of point yi into an attractive Fattractive and repulsive
term Frepulsive. Notice that Fattractive,i induces a significant attractive force only between points that are nearby point i in
the original space since it involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the
equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the latent space, since it only depends on the
distance between points. For this reason, t-SNE plots that are rotations of each other should be considered equivalent.

15 It does not explicitly parametrize feature extraction required to compute the embedding coordinates. Thus it cannot be applied to find the
coordinate of new data points.
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Fig. 52. Illustration of the t-SNE embedding. xi points correspond to the original high-dimensional points while the yi points are the corresponding
low-dimensional map points produced by t-SNE. Here we consider two points, x1, x2, that are respectively ‘‘close’’ and ‘‘far’’ from x0. The high-
dimensional Gaussian (short-tail) distribution p(x) of x0’s neighbors is shown in blue. The low-dimensional Cauchy (fat-tail) distribution q(y) of x0’s
neighbors is shown in red. The map point yi , is obtained by minimizing the difference |q(y) � p(xi)| (similar to minimizing the KL divergence). We
see that point x1 is mapped to short distances |y1 � y0|. In contrast, far-away points such as x2 are mapped to relatively large distances |y2 � y0|.

• t-SNE results are stochastic. In applying gradient descent the solution will depend on the initial seed. Thus, the map
obtained may vary depending on the seed used and different t-SNE runs will give slightly different results.

• t-SNE generally preserves short distance information. As a rule of thumb, one should expect that nearby points on the
t-SNE map are also closeby in the original space, i.e. t-SNE tends to preserve ordination (but not actual distances).
For a pictorial explanation of this, we refer the reader to Fig. 52.

• Scales are deformed in t-SNE. Since a scale-free distribution is used in the latent space, one should not put too much
emphasis on the meaning of the size of any clusters observed in the latent space.

• t-SNE is computationally intensive. Finally, a direct implementation of t-SNE has an algorithmic complexity of O(N2)
which is only applicable to small to medium datasets. Improved scaling of the form O(N logN) can be achieved
at the cost of approximating Eq. (135) by using the Barnes–Hut method (Van Der Maaten, 2014) for N-body
simulations (Barnes and Hut, 1986). More recently extremely efficient t-SNE implementation making use of fast
Fourier transforms for kernel summations in (136) have been made available on https://github.com/KlugerLab/FIt-
SNE (Linderman et al., 2017).

As an illustration, in Fig. 53 we applied t-SNE to a Gaussian mixture model consisting of thirty Gaussians, whose means
are uniformly distributed in forty-dimensional space. We compared the results to a random two-dimensional projection
and PCA. It is clear that unlike more naïve dimensional reduction techniques, both PCA and t-SNE can identify the presence
of well-formed clusters. The t-SNE visualization cleanly separates all the clusters while certain clusters blend together in
the PCA plot. This is a direct consequence of the fact that t-SNE keeps nearby points close together while repelling points
that are far apart.

Fig. 54 shows t-SNE and PCA plots for the MNIST dataset of ten handwritten numerical digits (0–9). It is clear that the
non-linear nature of t-SNE makes it much better at capturing and visualizing the complicated correlations between digits,
compared to PCA.

13. Clustering

In this section, we continue our discussion of unsupervised learning methods. Unsupervised learning is concerned
with discovering structure in unlabeled data (for instance learning local structures for data visualization, see Section 12).
The lack of labels make unsupervised learning much more difficult and subtle than its supervised counterpart. What is
somewhat surprising is that even without labels it is still possible to uncover and exploit the hidden structure in the data.
Perhaps, the simplest example of unsupervised learning is clustering. The aim of clustering is to group unlabeled data into
clusters according to some similarity or distance measure. Informally, a cluster is thought of as a set of points sharing
some pattern or structure.

Clustering finds many applications throughout data mining (Larsen and Aone, 1999), data compression and signal
processing (Gersho and Gray, 2012; MacKay, 2003). Clustering can be used to identify coarse features or high level
structures in an unlabeled dataset. The technique also finds many applications in physical sciences, ranging from detecting
celestial emission sources in astronomical surveys (Sander et al., 1998) to inferring groups of genes and proteins with
similar functions in biology (Eisen et al., 1998), and building entanglement classifiers (Lu et al., 2017). Clustering is perhaps
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and Saul, 2000) have been proposed and to address this class of problems. These techniques are generally good at
preserving local structures in the data but typically fail to capture structures at the larger scale such as the clusters in
which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
dimensional training point is mapped to low-dimensional embedding coordinates, which are optimized in a way to
preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure of high-dimensional
datasets while at the same time preserving locality. In physics, t-SNE has recently been used to reduce the dimensionality
and classify spin configurations, generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,
2017) and Fermi–Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also applied to study clustering
transitions in glass-like problems in the context of quantum control (Day et al., 2019).

The idea of stochastic neighbor embedding is to associate a probability distribution to the neighborhood of each data
(note x 2 Rp, p is the number of features):

pi|j =
exp(�||xi � xj||2/2� 2

i )P
k6=i exp(�||xi � xk||2/2� 2

i )
, (132)

where pi|j can be interpreted as the likelihood that xj is xi’s neighbor (thus we take pi|i = 0). �i are free bandwidth
parameters that are usually determined by fixing the local entropy H(pi) of each data point:

H(pi) ⌘ �

X

j

pj|i log2 pj|i. (133)

The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
distribution pij ⌘ (pi|j + pj|i)/(2N). This guarantees that

P
j pij > 1/(2N) for all data points xi, resulting in each data point

xi making a significant contribution to the cost function to be defined below.
t-SNE constructs a similar probability distribution qij in a low dimensional latent space (with coordinates Y = {yi}, yi 2

Rp0 , where p0 < p is the dimension of the latent space):

qij =
(1 + ||yi � yj||2)�1

P
k6=i(1 + ||yi � yk||2)�1 . (134)

The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
(relative neighborhoods) while strongly repelling two points that are far apart in the original space (see Fig. 52). In order
to find the latent space coordinates yi, t-SNE minimizes the Kullback–Leibler divergence between qij and pij:

C(Y ) = DKL(p k q) ⌘

X

ij

pij log
✓
pij
qij

◆
. (135)

This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:

@yiC =

X

j6=i

4pijqijZi(yi � yj) �

X

j6=i

4q2ijZi(yi � yj),

= Fattractive,i � Frepulsive,i, (136)

where Zi = 1/(
P

k6=i(1+||yk�yi||2)�1). We have separated the gradient of point yi into an attractive Fattractive and repulsive
term Frepulsive. Notice that Fattractive,i induces a significant attractive force only between points that are nearby point i in
the original space since it involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the
equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the latent space, since it only depends on the
distance between points. For this reason, t-SNE plots that are rotations of each other should be considered equivalent.

15 It does not explicitly parametrize feature extraction required to compute the embedding coordinates. Thus it cannot be applied to find the
coordinate of new data points.
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attractive force comes only between 
nearby points in the original space



Properties of t-SNE

• Can rotate data: KL divergence is invariant under rotations in 
latent space. 


• Results are stochastic: will depend on initial seed for gradient 
descent. 


• Generally preserves short-distance information (preserves 
ordination but not actual distance between points).


• Deforms scales (not too much emphasis on the latent space) 


• Computationally expensive with a  scaling (can be 
improved to  using the Barnes-Hut method. 

𝒪(N2)
𝒪(N log N)
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Fig. 53. Different visualizations of a Gaussian mixture formed of K = 30 mixtures in a D = 40 dimensional space. The Gaussians have the same
covariance but have means drawn uniformly at random in the space [�10, 10]40. (a) Plot of the first two coordinates. The labels of the different
Gaussian are indicated by the different colors. Note that in a realistic setting, label information is of course not available, thus making it very hard to
distinguish the different clusters. (b) Random projection of the data onto a 2 dimensional space. (c) Projection onto the first 2 principal components.
Only a small fraction of the variance is explained by those components (the ratio is indicated along the axis). (d) t-SNE embedding (perplexity =
60, # iteration = 1000) in a 2 dimensional latent space. t-SNE captures correctly the local structure of the data.

Fig. 54. Visualization of the MNIST handwritten digits training dataset (here N = 60 000). (a) First two principal components. (b) t-SNE applied
with a perplexity of 30, a Barnes–Hut angle of 0.5 and 1000 gradient descent iterations. In order to reduce the noise and speed-up computation, PCA
was first applied to the dataset to project it down to 40 dimensions. We used an open-source implementation to produce the results (Linderman
et al., 2017), see https://github.com/KlugerLab/FIt-SNE.

the simplest way to look for hidden structure in a dataset and for this reason, is among the most widely used and employed
data analysis and machine learning techniques.

The field of clustering is vast and there exists a flurry of clustering methods suited for different purposes. Some
common considerations one has to take into account when choosing a particular method is the distribution of the
clusters (overlapping/noisy clusters vs. well-separated clusters), the geometry of the data (flat vs. non-flat), the cluster
size distribution (multiple sizes vs. uniform sizes), the dimensionality of the data (low vs. high dimensional) and the
computational efficiency of the desired method (small vs. large dataset).

We begin Section 13.1 with a focus on popular practical clustering methods such as K -means clustering, hierarchical
clustering and density clustering. Our goal is to highlight the strength, weaknesses and differences between these
techniques, while laying out some of the theoretical framework required for clustering analysis. There exist many more
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t-SNE on GPU

• T-SNE is a great tool but quickly becomes slow to operate with 
the sklearn implementation. 


• Making T-SNE fast by putting it on the GPU: 
https://medium.com/rapids-ai/tsne-with-gpus-hours-to- 
seconds-9d9c17c941db 




Applications

• How much power is in your dimensions? MNIST: decay of 
power in components of PCA. 


• Interpretability of first components: 2D Ising (magnetization) 


• Visualize which variables your neural network is using: apply 
PCA (or other visualization methods) to different layers. 
Remember, deeper layers use more abstract variables. 


• Disclaimer: this is a subset of visualizing techniques. If you face 
a visualization problem which cannot be dealt with these 
methods, take a more detailed look on available algorithms. 




Summary

• Unsupervised learning

• Challenges of High-dimensional data

• Principal component analysis (PCA)

• Multi-dimensional scaling (MDS)

• t-stochastic neighbor embedding (t-SNE)


