PHY 835: Collider Physics Phenomenology

Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 14: Unsupervised Learning



Recap of Lecture 13

Unsupervised learning

Challenges of High-dimensional data
Principal component analysis (PCA)
Multi-dimensional scaling (MDS)

t-stochastic neighbor embedding (1-SNE)



Outline for today

 K-means clustering
* Agglomerative clustering
* Density-based (DB) clustering

e (Gaussian mixture models

References: 1803.08823, Deep Learning Book



Clustering

e Think of it as a simple way to look for hidden structure in high
dimensions (coarse features or high-level structures in unlabelled data).

e Points to take into account:

e Distribution of clusters (overlapping/noisy clusters vs. well-separated
clusters)

e Geometry of the data (flat vs. non-flat)
e Cluster size distribution (multiple vs. Uniform sizes)
e Dimensionality of the data (low-dimensional vs. high-dimensional)

e Computational efficiency of desired method



K-means Clustering

Divide training set into k different clusters of data points which are
near each-other.

Consider a set of NV unlabeled data points {Xn}f;':l where X, € R?.
K cluster centers called the cluster means: {,uk}f=1 with i, € RP.

Minimize the cost: C({x,u})—ZZrnk — )

=1 n=1

One-hot encoding: r,, = 1 if X, € cluster k and O otherwise;

Zk rnk — 1 V n and Zn rle — Nkv

Find the best cluster means (center of mass) such that variance
(moment of inertia) is minimized.



K-means Algorithm

Expectation: Given {r,;}, minimize C with respect to y;:
KLy = le ; 'nkXn.

Maximization: Given {y, }, find {r,, } which minimizes C:

|1 if k = argming (X, — py)?
"~ lo otherwise

Alternative between the above two steps until some convergence
criterion is met (e.g., change in C is smaller than a threshold).

Guaranteed to converge to local minimum (different initial random
cluster center initializations and post-select). Complexity O(kN).

Hard-assignment limit of the Gaussian mixture model, where all
cluster variances are assumed to be the same.



K-means Algorithm
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Fig. 55. K-means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)-(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. ¢ converges after t = 18 iterations for this choice of random seed (for center initialization).



Agglomerative Method

Start from small initial clusters, then
progressively merged to form larger
clusters.

Hierarchy of cluster can be visualized
in the form of a dendrogram.

Define a distance measure d(X, Y)
between clusters X and Y.

Two distances that are closest with
respect to d(X, Y) are merged until a
single cluster is left.
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Agglomerative Clustering Algorithm

* |nitialize each point to its own cluster.

o Given a set of K clusters X, X,, ..., Xk, merge clusters until one
cluster is left (K = 1):

o Find the closest pair of clusters (X, X)) : (i,j) = argmin; i d(X;, X;)

R
e Merge the pair. Update K «— K — 1. @y T 5
. . . RN N
* Different linkage methods (distances) 7] .. ; :
result in different algorithms. 0. @
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Agglomerative Clustering Algorithm

e Different linkage methods (distances):

Single gx;, X) = min _[1x; — x;ll Complete  gix, X)= max [|x — x|l
Ilnkage X €Xi, X €X; ||nkage X; €X;,X;€X;

Average  d(x, X)) = |X| N2 Imexie o Ward gy RIBL e
linkage Xi€X; XiEX; linkage [Xi U Xj

« The Wald linkage is analogous to k-means in that it minimizes the
moment of inertia.

. Problem: Calculation complexity O(N?) (suitable for small datasets)

« Practical solution: start with k-means and then proceed hierarchical
(agglomerative clustering).



Density-based (DB) Clustering

Clusters are defined by regions with high density of data points.
Noise or outliers are expected to form regions of low density.

Unlike a distance-based approach, DB clustering considers
clusters of multiple shapes and sizes while identifying outliers.

Assumption: relative local density estimation is possible
(normally inaccessible for high-dimensional data due to large
sampling noise).

Widely used algorithms: DBSCAN, DB Clustering, etc. See:
https://pypi.org/project/tdc/



DBScan Algorithm

Density-based spatial clustering of application with noise (Ester et
al, 1996).

Crude estimate of local density is the e-neighborhood of point X, :
Ne(Xn) = {X € X|d(X, Xp) < &}

X, is a core-point if at least minPts are in its e-neighborhood. A
point X; is density-reachable if it's in a core-point’s ¢-neighborhood.

— Until all points in X have been visited; do

— Pick a point X; that has not been visited
— Mark Xx; as a visited point
— If X; is a core point; then

- Find the set C of all points that are density reachable from X;.
- C now forms a cluster. Mark all points within that cluster as being visited.

— Return the cluster assignments Cq, ..., C, with k the number of clusters. Points that have not been assigned to a
cluster are considered noise or outliers.



DBScan Algorithm

Do not need to specify # clusters
but only the hyperparameters € and
minPts.

Scalable to large datasets as
computational cost ~ O(N log N).

Note cluster with different shapes
and sizes.

Crosses are outliers.
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Latent Variables

Central to unsupervised learning is the idea of a latent or hidden
variable (not directly observable; yet influence visible structure).

The cluster identify of each datapoint is a latent variable. We cannot
observe the label directly, but points in the same cluster are “close”.

In this abstract language, clustering is an algorithm to learn the most
probably value of a latent variable associated with each datapoint.

Need to make assumption about the structure of data (common to
unsupervised learning), e.g., underlying probability distribution from
which the data was generated — generative model.

E.g., In clustering, each cluster is characterized by some probability
distribution (e.g. Gaussian distribution with some mean & variance).
The latent variable is chosen to minimize some cost function.



Gaussian Mixture Model (GMM)

Generative model often used in the context of clustering.

Points are drawn from one of the K Gaussians, with its own p;, & 2,

1
N(X|p, X) ~ exp [_5(" — )X (x— M)T}

, = Probability a pt is drawn from mixture k, the probability of
generating a point X in a GMM is:

K

PRI {pie, Do mi}) = D N pye, D).

k=1

Given a dataset X = {X{, ...Xy}, the likelihood of the dataset:

N
p(X|{”'k’ Ek’ 7Tk}) — 1 _p(xil{”'ka Eka nk})

i=1

Denote the set of parameters {yy, 2, 7, } by 0.




Gaussian Mixture Model (GMM)

Common cost function is Maximum likelihood estimation (MLE).

Latent variables are chosen to maximize the likelinood of the
observed data under our generative model — Expectation-
Maximization (EM) equations.

Latent variable Z = (z;, ..., Zg) for point X has the property that
zx = L if X is drawn from the k-th Gaussian, and z;,;, = 0.

Probability of observing a datapoint X given z:

K

p(x|z; (e, o)) = [ [V Rlprr D)

k=1

Probability of observing a given value of latent variable:

z|{7TI< 1_[7'[21<



Gaussian Mixture Model (GMM)

e Joint probability of a clustering assignment Z and a datapoint X:

p(x,z;0) = p(x|z; {p), 2'k})p(Z|{mmi}).

o Conditional probability of the datapoint in the k-th cluster, y(z;),
given model parameters 6 is

TN (X ek, 2k)
V(Zk) = p(Zk = 1|x; (9) = K< ‘ { i
Zj:l N (x| wj, 25)

known as the “responsibility” that mixture k takes for explaining X.

* This soft classifier can be made into a hard assignment by assigning
each point to the cluster with the largest probability arg max, y(z;)-



Gaussian Mixture Model (GMM)

Choose the parameters that maximize the likelihood of the data:

0 — arg max log p(X0)
0

Use the MLE 6 to calculate the optimal hard cluster assignment:

dI'g Maxy )/}(Zk) where )/}(Zk) = p(zx = 1|x; 0)

Often impossible to find the global maximum; settle for a local
maximum. One approach is to use SGD.

An alternative approach is an iterative procedure called EM: given
an initial guess 9(0), EM iteratively generates new estimates
O, 9> ... with non-decreasing likelihood.



Gaussian Mixture Model (GMM)

* Maximize the expected log likelihood given an assignment of the

latent variables: 6U*" = argmaxg E,;x.q) [log p(X, Z; 6)]

N K

Exllogp(X, Z:0) = Y 3 v’ llog M(ilhy, Z) + log i
i=1 k=1

with the shorthand " = p(z/x; 6©) with z, the kth component of z;.

 Setting the derivatives w.r.t. @ to zero subjected to the constraint

 These are the usual estimates for the mean and variances, with
each datapoint weighted according to our current best guess for the
probability that it belongs to cluster k.



Gaussian Mixture Model (GMM)

« Our new estimate 0“*! is then used to calculate responsibility y"*" and
repeat the process (c.f. K-means algorithm).

m== | ikelihood, K = 3
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e Application of GMM to the Ising dataset.
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* |nstead of directly estimate the MLE,
computational efficient methods
e.g. EM equations. T



Summary

K-means clustering
Agglomerative clustering
Density-based (DB) clustering

Gaussian mixture models



