
(Image: Fermilab/CERN)

PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 14: Unsupervised Learning

Recap of Lecture 13

• Unsupervised learning

• Challenges of High-dimensional data

• Principal component analysis (PCA)

• Multi-dimensional scaling (MDS)

• t-stochastic neighbor embedding (t-SNE)

Outline for today

• K-means clustering

• Agglomerative clustering

• Density-based (DB) clustering

• Gaussian mixture models

References: 1803.08823, Deep Learning Book

Clustering

• Think of it as a simple way to look for hidden structure in high
dimensions (coarse features or high-level structures in unlabelled data).

• Points to take into account:

• Distribution of clusters (overlapping/noisy clusters vs. well-separated
clusters)

• Geometry of the data (flat vs. non-flat)

• Cluster size distribution (multiple vs. Uniform sizes)

• Dimensionality of the data (low-dimensional vs. high-dimensional)

• Computational efficiency of desired method

K-means Clustering

• Divide training set into different clusters of data points which are
near each-other.

• Consider a set of unlabeled data points where .

• cluster centers called the cluster means: with .

• Minimize the cost:

• One-hot encoding: if cluster and otherwise;

• Find the best cluster means (center of mass) such that variance
(moment of inertia) is minimized.

k

N {xn}N
n=1 xn ∈ ℝp

K {μk}K
k=1 μk ∈ ℝp

rnk = 1 xn ∈ k 0

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 75

Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
µk

 K
k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 75

Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
µk

 K
k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.

K-means Algorithm

• Expectation: Given , minimize with respect to :

• Maximization: Given , find which minimizes :

• Alternative between the above two steps until some convergence
criterion is met (e.g., change in C is smaller than a threshold).

• Guaranteed to converge to local minimum (different initial random
cluster center initializations and post-select). Complexity .

• Hard-assignment limit of the Gaussian mixture model, where all
cluster variances are assumed to be the same.

{rnk} C μk

{μk} {rnk} C

𝒪(kN)

76 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

within each cluster is minimized. In physical terms, C is equivalent to the sum of the moments of inertia of every cluster.
Indeed, as we will see below, the cluster means µk correspond to the centers of mass of their respective cluster.

K-Means algorithm. The K -means algorithm alternates between two steps:

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk. Taking a simple derivative and setting
it to zero yields the following update rule:

µk =
1
Nk

X

n

rnkxn. (138)

2. Maximization: Given a set of cluster means
�
µk

, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =

⇢
1 if k = argmink0 (xn � µk0)2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
C. Since C is generally a non-convex function, in practice one usually needs to run the algorithm with different initial
random cluster center initializations and post-select the best local minimum. A simple implementation of K -means has
an average computational complexity which scales linearly in the size of the dataset (more specifically the complexity is
O(KN) per iteration) and is thus scalable to very large datasets.

As we will see in Section 13.2, K -means is a hard-assignment limit of the Gaussian mixture model where all cluster
variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y) 2 R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i0,j0) d(Xi0 , Xj0)
(2) Merge the pair. Update: K K � 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum distance between two elements of
the different clusters

d(Xi, Xj) = min
xi2Xi,xj2Xj

||xi � xj||2. (140)

2. Complete linkage: the distance between clusters i and j is defined as the maximum distance between two elements
of the different clusters.

d(Xi, Xj) = max
xi2Xi,xj2Xj

||xi � xj||2 (141)

17 Note that this measure need not be a metric.

76 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

within each cluster is minimized. In physical terms, C is equivalent to the sum of the moments of inertia of every cluster.
Indeed, as we will see below, the cluster means µk correspond to the centers of mass of their respective cluster.

K-Means algorithm. The K -means algorithm alternates between two steps:

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk. Taking a simple derivative and setting
it to zero yields the following update rule:

µk =
1
Nk

X

n

rnkxn. (138)

2. Maximization: Given a set of cluster means
�
µk

, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =

⇢
1 if k = argmink0 (xn � µk0)2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
C. Since C is generally a non-convex function, in practice one usually needs to run the algorithm with different initial
random cluster center initializations and post-select the best local minimum. A simple implementation of K -means has
an average computational complexity which scales linearly in the size of the dataset (more specifically the complexity is
O(KN) per iteration) and is thus scalable to very large datasets.

As we will see in Section 13.2, K -means is a hard-assignment limit of the Gaussian mixture model where all cluster
variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y) 2 R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i0,j0) d(Xi0 , Xj0)
(2) Merge the pair. Update: K K � 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum distance between two elements of
the different clusters

d(Xi, Xj) = min
xi2Xi,xj2Xj

||xi � xj||2. (140)

2. Complete linkage: the distance between clusters i and j is defined as the maximum distance between two elements
of the different clusters.

d(Xi, Xj) = max
xi2Xi,xj2Xj

||xi � xj||2 (141)

17 Note that this measure need not be a metric.

K-means Algorithm
P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 75

Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
µk

 K
k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 75

Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
µk

 K
k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.

Agglomerative Method

• Start from small initial clusters, then
progressively merged to form larger
clusters.

• Hierarchy of cluster can be visualized
in the form of a dendrogram.

• Define a distance measure
between clusters and .

• Two distances that are closest with
respect to are merged until a
single cluster is left.

d(X, Y)
X Y

d(X, Y)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 77

Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

X

xi2Xi,xj2Xj

||xi � xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi [Xj|
(µi � µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another

Agglomerative Clustering Algorithm

• Initialize each point to its own cluster.

• Given a set of clusters , merge clusters until one
cluster is left ():

• Find the closest pair of clusters

• Merge the pair. Update .

• Different linkage methods (distances)
result in different algorithms.

K X1, X2, …, XK
K = 1

(Xi, Xj) : (i, j) = argmin(i′ ,j′)d(Xi′ , Xj′)

K ← K − 1

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 77

Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

X

xi2Xi,xj2Xj

||xi � xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi [Xj|
(µi � µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another

Agglomerative Clustering Algorithm

• Different linkage methods (distances):

• The Wald linkage is analogous to -means in that it minimizes the
moment of inertia.

• Problem: Calculation complexity (suitable for small datasets)

• Practical solution: start with -means and then proceed hierarchical
(agglomerative clustering).

k

𝒪(N2)

k

Single
linkage

76 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

within each cluster is minimized. In physical terms, C is equivalent to the sum of the moments of inertia of every cluster.
Indeed, as we will see below, the cluster means µk correspond to the centers of mass of their respective cluster.

K-Means algorithm. The K -means algorithm alternates between two steps:

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk. Taking a simple derivative and setting
it to zero yields the following update rule:

µk =
1
Nk

X

n

rnkxn. (138)

2. Maximization: Given a set of cluster means
�
µk

, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =

⇢
1 if k = argmink0 (xn � µk0)2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
C. Since C is generally a non-convex function, in practice one usually needs to run the algorithm with different initial
random cluster center initializations and post-select the best local minimum. A simple implementation of K -means has
an average computational complexity which scales linearly in the size of the dataset (more specifically the complexity is
O(KN) per iteration) and is thus scalable to very large datasets.

As we will see in Section 13.2, K -means is a hard-assignment limit of the Gaussian mixture model where all cluster
variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y) 2 R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i0,j0) d(Xi0 , Xj0)
(2) Merge the pair. Update: K K � 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum distance between two elements of
the different clusters

d(Xi, Xj) = min
xi2Xi,xj2Xj

||xi � xj||2. (140)

2. Complete linkage: the distance between clusters i and j is defined as the maximum distance between two elements
of the different clusters.

d(Xi, Xj) = max
xi2Xi,xj2Xj

||xi � xj||2 (141)

17 Note that this measure need not be a metric.

Average
linkage

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 77

Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

X

xi2Xi,xj2Xj

||xi � xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi [Xj|
(µi � µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another

Complete
linkage

76 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

within each cluster is minimized. In physical terms, C is equivalent to the sum of the moments of inertia of every cluster.
Indeed, as we will see below, the cluster means µk correspond to the centers of mass of their respective cluster.

K-Means algorithm. The K -means algorithm alternates between two steps:

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk. Taking a simple derivative and setting
it to zero yields the following update rule:

µk =
1
Nk

X

n

rnkxn. (138)

2. Maximization: Given a set of cluster means
�
µk

, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =

⇢
1 if k = argmink0 (xn � µk0)2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
C. Since C is generally a non-convex function, in practice one usually needs to run the algorithm with different initial
random cluster center initializations and post-select the best local minimum. A simple implementation of K -means has
an average computational complexity which scales linearly in the size of the dataset (more specifically the complexity is
O(KN) per iteration) and is thus scalable to very large datasets.

As we will see in Section 13.2, K -means is a hard-assignment limit of the Gaussian mixture model where all cluster
variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y) 2 R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i0,j0) d(Xi0 , Xj0)
(2) Merge the pair. Update: K K � 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum distance between two elements of
the different clusters

d(Xi, Xj) = min
xi2Xi,xj2Xj

||xi � xj||2. (140)

2. Complete linkage: the distance between clusters i and j is defined as the maximum distance between two elements
of the different clusters.

d(Xi, Xj) = max
xi2Xi,xj2Xj

||xi � xj||2 (141)

17 Note that this measure need not be a metric.
Ward

linkage

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 77

Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

X

xi2Xi,xj2Xj

||xi � xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi [Xj|
(µi � µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another

Density-based (DB) Clustering

• Clusters are defined by regions with high density of data points.

• Noise or outliers are expected to form regions of low density.

• Unlike a distance-based approach, DB clustering considers
clusters of multiple shapes and sizes while identifying outliers.

• Assumption: relative local density estimation is possible
(normally inaccessible for high-dimensional data due to large
sampling noise).

• Widely used algorithms: DBSCAN, DB Clustering, etc. See:
https://pypi.org/project/fdc/

DBScan Algorithm

• Density-based spatial clustering of application with noise (Ester et
al, 1996).

• Crude estimate of local density is the -neighborhood of point :

• is a core-point if at least minPts are in its -neighborhood. A
point is density-reachable if it’s in a core-point’s -neighborhood.

•

ϵ xn

xn ϵ
xi ϵ

78 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 57. (a) Illustration of DBSCAN algorithm with minPts= 4. Two "-neighborhoods are represented as dashed circles of radius ". Red points are the
core points and blue points are density-reachable point that are not core points. Outliers are gray colored. (b) Application of DBSCAN (minPts=40)
to a noisy dataset with two non-convex clusters. Density profile is shown for clarity. Outliers are indicated by black crosses.

recently introduced variant of DB clustering (Rodriguez and Laio, 2014) that is similar in spirit which the reader is urged
to consult. One of the authors (A. D.) has also created a Python package, https://pypi.org/project/fdc/, which makes use
of accurate density estimates via kernel methods combined with agglomerative clustering to produce fast and accurate
density clustering (see also GitHub repository).

DBSCAN algorithm. Here we describe the most prominent DB clustering algorithm: DBSCAN, or density-based spatial
clustering of applications with noise (Ester et al., 1996). Consider once again a set of N data points X ⌘ {xn}Nn=1.

We start by defining the "-neighborhood of point xn as follows:

N"(xn) = {x 2 X |d(x, xn) < "} . (144)

N"(xn) are the data points that are at a distance smaller than " from xn. As before, we consider d(·, ·) to be the Euclidean
metric (which yields spherical neighborhoods, see Fig. 57) but other metrics may be better suited depending on the specific
data. N"(xn) can be seen as a crude estimate of local density. xn is considered to be a core-point if at least minPts are in
its "-neighborhood. minPts is a free parameter of the algorithm that sets the scale of the size of the smallest cluster one
should expect. Finally, a point xi is said to be density-reachable if it is in the "-neighborhood of a core-point. From these
definitions, the algorithm can be simply formulated (see also Fig. 57):

! Until all points in X have been visited; do

� Pick a point xi that has not been visited
� Mark xi as a visited point
� If xi is a core point; then

· Find the set C of all points that are density reachable from xi.
· C now forms a cluster. Mark all points within that cluster as being visited.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 79

Fig. 58. (a) Application of Gaussian mixture modeling to the Ising dataset. The normalized histogram corresponds to the first principal component
distribution of the dataset (or equivalently the magnetization in this case). The 1D data is fitted with a K = 3-component Gaussian mixture. The
likehood of the fitted Gaussian mixture is represented in red and is obtained via the expectation–maximization algorithm (b) The Gaussian mixture
model can be used to compute posterior probability (responsibilities), i.e. the probability of being in one of the phases. Note that the point where
� (1) = � (2) = � (3) can be interpreted as the critical point. Indeed the crossing occurs at T ⇡ 2.26.

! Return the cluster assignments C1, . . . , Ck, with k the number of clusters. Points that have not been assigned to a
cluster are considered noise or outliers.

Note that DBSCAN does not require the user to specify the number of clusters but only " and minPts. While, it is common
to heuristically fix these parameters, methods such as cross-validation can be used for their determination. Finally, we
note that DBSCAN is very efficient since efficient implementations have a computational cost of O(N logN).

13.2. Clustering and latent variables via the Gaussian mixture models

In the previous section, we introduced several practical methods for clustering. In this section, we will approach
clustering from a more abstract vantage point, and in the process, introduce many of the core ideas underlying
unsupervised learning. A central concept in many unsupervised learning techniques is the idea of a latent or hidden
variable. Even though latent variables are not directly observable, they still influence the visible structure of the data.
For example, in the context of clustering we can think of the cluster identity of each datapoint (i.e. which cluster does a
datapoint belong to) as a latent variable. And even though we cannot see the cluster label explicitly, we know that points
in the same cluster tend to be closer together. The latent variables in our data (cluster identity) are a way of representing
and abstracting the correlations between datapoints.

In this language, we can think of clustering as an algorithm to learn the most probable value of a latent variable
(cluster identity) associated with each datapoint. Calculating this latent variable requires additional assumptions about the
structure of our dataset. Like all unsupervised learning algorithms, in clustering we must make an assumption about the

78 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 57. (a) Illustration of DBSCAN algorithm with minPts= 4. Two "-neighborhoods are represented as dashed circles of radius ". Red points are the
core points and blue points are density-reachable point that are not core points. Outliers are gray colored. (b) Application of DBSCAN (minPts=40)
to a noisy dataset with two non-convex clusters. Density profile is shown for clarity. Outliers are indicated by black crosses.

recently introduced variant of DB clustering (Rodriguez and Laio, 2014) that is similar in spirit which the reader is urged
to consult. One of the authors (A. D.) has also created a Python package, https://pypi.org/project/fdc/, which makes use
of accurate density estimates via kernel methods combined with agglomerative clustering to produce fast and accurate
density clustering (see also GitHub repository).

DBSCAN algorithm. Here we describe the most prominent DB clustering algorithm: DBSCAN, or density-based spatial
clustering of applications with noise (Ester et al., 1996). Consider once again a set of N data points X ⌘ {xn}Nn=1.

We start by defining the "-neighborhood of point xn as follows:

N"(xn) = {x 2 X |d(x, xn) < "} . (144)

N"(xn) are the data points that are at a distance smaller than " from xn. As before, we consider d(·, ·) to be the Euclidean
metric (which yields spherical neighborhoods, see Fig. 57) but other metrics may be better suited depending on the specific
data. N"(xn) can be seen as a crude estimate of local density. xn is considered to be a core-point if at least minPts are in
its "-neighborhood. minPts is a free parameter of the algorithm that sets the scale of the size of the smallest cluster one
should expect. Finally, a point xi is said to be density-reachable if it is in the "-neighborhood of a core-point. From these
definitions, the algorithm can be simply formulated (see also Fig. 57):

! Until all points in X have been visited; do

� Pick a point xi that has not been visited
� Mark xi as a visited point
� If xi is a core point; then

· Find the set C of all points that are density reachable from xi.
· C now forms a cluster. Mark all points within that cluster as being visited.

DBScan Algorithm

• Do not need to specify # clusters
but only the hyperparameters and
minPts.

• Scalable to large datasets as
computational cost .

• Note cluster with different shapes
and sizes.

• Crosses are outliers.

ϵ

∼ 𝒪(N log N)

78 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 57. (a) Illustration of DBSCAN algorithm with minPts= 4. Two "-neighborhoods are represented as dashed circles of radius ". Red points are the
core points and blue points are density-reachable point that are not core points. Outliers are gray colored. (b) Application of DBSCAN (minPts=40)
to a noisy dataset with two non-convex clusters. Density profile is shown for clarity. Outliers are indicated by black crosses.

recently introduced variant of DB clustering (Rodriguez and Laio, 2014) that is similar in spirit which the reader is urged
to consult. One of the authors (A. D.) has also created a Python package, https://pypi.org/project/fdc/, which makes use
of accurate density estimates via kernel methods combined with agglomerative clustering to produce fast and accurate
density clustering (see also GitHub repository).

DBSCAN algorithm. Here we describe the most prominent DB clustering algorithm: DBSCAN, or density-based spatial
clustering of applications with noise (Ester et al., 1996). Consider once again a set of N data points X ⌘ {xn}Nn=1.

We start by defining the "-neighborhood of point xn as follows:

N"(xn) = {x 2 X |d(x, xn) < "} . (144)

N"(xn) are the data points that are at a distance smaller than " from xn. As before, we consider d(·, ·) to be the Euclidean
metric (which yields spherical neighborhoods, see Fig. 57) but other metrics may be better suited depending on the specific
data. N"(xn) can be seen as a crude estimate of local density. xn is considered to be a core-point if at least minPts are in
its "-neighborhood. minPts is a free parameter of the algorithm that sets the scale of the size of the smallest cluster one
should expect. Finally, a point xi is said to be density-reachable if it is in the "-neighborhood of a core-point. From these
definitions, the algorithm can be simply formulated (see also Fig. 57):

! Until all points in X have been visited; do

� Pick a point xi that has not been visited
� Mark xi as a visited point
� If xi is a core point; then

· Find the set C of all points that are density reachable from xi.
· C now forms a cluster. Mark all points within that cluster as being visited.

Latent Variables
• Central to unsupervised learning is the idea of a latent or hidden

variable (not directly observable; yet influence visible structure).

• The cluster identify of each datapoint is a latent variable. We cannot
observe the label directly, but points in the same cluster are “close”.

• In this abstract language, clustering is an algorithm to learn the most
probably value of a latent variable associated with each datapoint.

• Need to make assumption about the structure of data (common to
unsupervised learning), e.g., underlying probability distribution from
which the data was generated — generative model.

• E.g., in clustering, each cluster is characterized by some probability
distribution (e.g. Gaussian distribution with some mean & variance).
The latent variable is chosen to minimize some cost function.

Gaussian Mixture Model (GMM)

• Generative model often used in the context of clustering.

• Points are drawn from one of the Gaussians, with its own & :

• = Probability a pt is drawn from mixture , the probability of
generating a point in a GMM is:

• Given a dataset , the likelihood of the dataset:

• Denote the set of parameters by .

K μk Σk

πk k
x

X = {x1, …xN}

{μk, Σk, πk} θ

80 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix ⌃k,

N (x|µ,⌃) ⇠ exp

�

1
2
(x � µ)⌃�1(x � µ)T

�
. (145)

Let us denote the probability that a point is drawn from mixture k by ⇡k. Then, the probability of generating a point x in
a GMM is given by

p(x|{µk,⌃ k, ⇡k}) =

KX

k=1

N (x|µk,⌃ k)⇡k. (146)

Given a dataset X = {x1, . . . , xN}, we can write the likelihood of the dataset as

p(X |{µk,⌃ k, ⇡k}) =

NY

i=1

p(xi|{µk,⌃ k, ⇡k}) (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,⌃ k, ⇡k} by ✓.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ⌘ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,⌃ k}) =

KY

k=1

N (x|µk, ⌃k)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{⇡k}) =

KY

k=1

⇡
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; ✓) = p(x|z; {µk,⌃ k})p(z|{⇡k}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, � (zk), given model parameters ✓ as

� (zk) ⌘ p(zk = 1|x; ✓) =
⇡kN (x|µk, ⌃k)PK
j=1 ⇡jN (x|µj, ⌃j)

. (151)

The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
✓

log p(X |✓) (152)

80 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix ⌃k,

N (x|µ,⌃) ⇠ exp

�

1
2
(x � µ)⌃�1(x � µ)T

�
. (145)

Let us denote the probability that a point is drawn from mixture k by ⇡k. Then, the probability of generating a point x in
a GMM is given by

p(x|{µk,⌃ k, ⇡k}) =

KX

k=1

N (x|µk,⌃ k)⇡k. (146)

Given a dataset X = {x1, . . . , xN}, we can write the likelihood of the dataset as

p(X |{µk,⌃ k, ⇡k}) =

NY

i=1

p(xi|{µk,⌃ k, ⇡k}) (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,⌃ k, ⇡k} by ✓.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ⌘ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,⌃ k}) =

KY

k=1

N (x|µk, ⌃k)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{⇡k}) =

KY

k=1

⇡
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; ✓) = p(x|z; {µk,⌃ k})p(z|{⇡k}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, � (zk), given model parameters ✓ as

� (zk) ⌘ p(zk = 1|x; ✓) =
⇡kN (x|µk, ⌃k)PK
j=1 ⇡jN (x|µj, ⌃j)

. (151)

The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
✓

log p(X |✓) (152)

80 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix ⌃k,

N (x|µ,⌃) ⇠ exp

�

1
2
(x � µ)⌃�1(x � µ)T

�
. (145)

Let us denote the probability that a point is drawn from mixture k by ⇡k. Then, the probability of generating a point x in
a GMM is given by

p(x|{µk,⌃ k, ⇡k}) =

KX

k=1

N (x|µk,⌃ k)⇡k. (146)

Given a dataset X = {x1, . . . , xN}, we can write the likelihood of the dataset as

p(X |{µk,⌃ k, ⇡k}) =

NY

i=1

p(xi|{µk,⌃ k, ⇡k}) (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,⌃ k, ⇡k} by ✓.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ⌘ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,⌃ k}) =

KY

k=1

N (x|µk, ⌃k)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{⇡k}) =

KY

k=1

⇡
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; ✓) = p(x|z; {µk,⌃ k})p(z|{⇡k}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, � (zk), given model parameters ✓ as

� (zk) ⌘ p(zk = 1|x; ✓) =
⇡kN (x|µk, ⌃k)PK
j=1 ⇡jN (x|µj, ⌃j)

. (151)

The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
✓

log p(X |✓) (152)

Gaussian Mixture Model (GMM)
• Common cost function is Maximum likelihood estimation (MLE).

• Latent variables are chosen to maximize the likelihood of the
observed data under our generative model → Expectation-
Maximization (EM) equations.

• Latent variable for point has the property that
 if is drawn from the -th Gaussian, and .

• Probability of observing a datapoint given :

• Probability of observing a given value of latent variable:

z = (z1, …, zK) x
zk = 1 x k zj≠k = 0

x z

80 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix ⌃k,

N (x|µ,⌃) ⇠ exp

�

1
2
(x � µ)⌃�1(x � µ)T

�
. (145)

Let us denote the probability that a point is drawn from mixture k by ⇡k. Then, the probability of generating a point x in
a GMM is given by

p(x|{µk,⌃ k, ⇡k}) =

KX

k=1

N (x|µk,⌃ k)⇡k. (146)

Given a dataset X = {x1, . . . , xN}, we can write the likelihood of the dataset as

p(X |{µk,⌃ k, ⇡k}) =

NY

i=1

p(xi|{µk,⌃ k, ⇡k}) (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,⌃ k, ⇡k} by ✓.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ⌘ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,⌃ k}) =

KY

k=1

N (x|µk, ⌃k)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{⇡k}) =

KY

k=1

⇡
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; ✓) = p(x|z; {µk,⌃ k})p(z|{⇡k}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, � (zk), given model parameters ✓ as

� (zk) ⌘ p(zk = 1|x; ✓) =
⇡kN (x|µk, ⌃k)PK
j=1 ⇡jN (x|µj, ⌃j)

. (151)

The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
✓

log p(X |✓) (152)

80 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix ⌃k,

N (x|µ,⌃) ⇠ exp

�

1
2
(x � µ)⌃�1(x � µ)T

�
. (145)

Let us denote the probability that a point is drawn from mixture k by ⇡k. Then, the probability of generating a point x in
a GMM is given by

p(x|{µk,⌃ k, ⇡k}) =

KX

k=1

N (x|µk,⌃ k)⇡k. (146)

Given a dataset X = {x1, . . . , xN}, we can write the likelihood of the dataset as

p(X |{µk,⌃ k, ⇡k}) =

NY

i=1

p(xi|{µk,⌃ k, ⇡k}) (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,⌃ k, ⇡k} by ✓.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ⌘ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,⌃ k}) =

KY

k=1

N (x|µk, ⌃k)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{⇡k}) =

KY

k=1

⇡
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; ✓) = p(x|z; {µk,⌃ k})p(z|{⇡k}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, � (zk), given model parameters ✓ as

� (zk) ⌘ p(zk = 1|x; ✓) =
⇡kN (x|µk, ⌃k)PK
j=1 ⇡jN (x|µj, ⌃j)

. (151)

The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
✓

log p(X |✓) (152)

Gaussian Mixture Model (GMM)

• Joint probability of a clustering assignment and a datapoint :

• Conditional probability of the datapoint in the -th cluster, ,
given model parameters is

 known as the “responsibility” that mixture takes for explaining .

• This soft classifier can be made into a hard assignment by assigning
each point to the cluster with the largest probability .

z x

k γ(zk)
θ

k x

arg maxkγ(zk)

80 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix ⌃k,

N (x|µ,⌃) ⇠ exp

�

1
2
(x � µ)⌃�1(x � µ)T

�
. (145)

Let us denote the probability that a point is drawn from mixture k by ⇡k. Then, the probability of generating a point x in
a GMM is given by

p(x|{µk,⌃ k, ⇡k}) =

KX

k=1

N (x|µk,⌃ k)⇡k. (146)

Given a dataset X = {x1, . . . , xN}, we can write the likelihood of the dataset as

p(X |{µk,⌃ k, ⇡k}) =

NY

i=1

p(xi|{µk,⌃ k, ⇡k}) (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,⌃ k, ⇡k} by ✓.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ⌘ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,⌃ k}) =

KY

k=1

N (x|µk, ⌃k)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{⇡k}) =

KY

k=1

⇡
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; ✓) = p(x|z; {µk,⌃ k})p(z|{⇡k}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, � (zk), given model parameters ✓ as

� (zk) ⌘ p(zk = 1|x; ✓) =
⇡kN (x|µk, ⌃k)PK
j=1 ⇡jN (x|µj, ⌃j)

. (151)

The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
✓

log p(X |✓) (152)

80 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix ⌃k,

N (x|µ,⌃) ⇠ exp

�

1
2
(x � µ)⌃�1(x � µ)T

�
. (145)

Let us denote the probability that a point is drawn from mixture k by ⇡k. Then, the probability of generating a point x in
a GMM is given by

p(x|{µk,⌃ k, ⇡k}) =

KX

k=1

N (x|µk,⌃ k)⇡k. (146)

Given a dataset X = {x1, . . . , xN}, we can write the likelihood of the dataset as

p(X |{µk,⌃ k, ⇡k}) =

NY

i=1

p(xi|{µk,⌃ k, ⇡k}) (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,⌃ k, ⇡k} by ✓.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ⌘ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,⌃ k}) =

KY

k=1

N (x|µk, ⌃k)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{⇡k}) =

KY

k=1

⇡
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; ✓) = p(x|z; {µk,⌃ k})p(z|{⇡k}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, � (zk), given model parameters ✓ as

� (zk) ⌘ p(zk = 1|x; ✓) =
⇡kN (x|µk, ⌃k)PK
j=1 ⇡jN (x|µj, ⌃j)

. (151)

The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
✓

log p(X |✓) (152)

Gaussian Mixture Model (GMM)

• Choose the parameters that maximize the likelihood of the data:

• Use the MLE to calculate the optimal hard cluster assignment:

• Often impossible to find the global maximum; settle for a local
maximum. One approach is to use SGD.

• An alternative approach is an iterative procedure called EM: given
an initial guess , EM iteratively generates new estimates

 with non-decreasing likelihood.

̂θ

θ(0)

θ(1), θ(2), …

80 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix ⌃k,

N (x|µ,⌃) ⇠ exp

�

1
2
(x � µ)⌃�1(x � µ)T

�
. (145)

Let us denote the probability that a point is drawn from mixture k by ⇡k. Then, the probability of generating a point x in
a GMM is given by

p(x|{µk,⌃ k, ⇡k}) =

KX

k=1

N (x|µk,⌃ k)⇡k. (146)

Given a dataset X = {x1, . . . , xN}, we can write the likelihood of the dataset as

p(X |{µk,⌃ k, ⇡k}) =

NY

i=1

p(xi|{µk,⌃ k, ⇡k}) (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,⌃ k, ⇡k} by ✓.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ⌘ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,⌃ k}) =

KY

k=1

N (x|µk, ⌃k)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{⇡k}) =

KY

k=1

⇡
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; ✓) = p(x|z; {µk,⌃ k})p(z|{⇡k}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, � (zk), given model parameters ✓ as

� (zk) ⌘ p(zk = 1|x; ✓) =
⇡kN (x|µk, ⌃k)PK
j=1 ⇡jN (x|µj, ⌃j)

. (151)

The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
✓

log p(X |✓) (152)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 81

where ✓ = {µk,⌃ k, ⇡k}. Once we know the MLEs ✓̂, we could use Eq. (151) to calculate the optimal hard cluster
assignment argmaxk �̂ (zk) where �̂ (zk) = p(zk = 1|x; ✓̂).

In practice, due to the complexity of Eq. (147), it is almost impossible to find the global maximum of the likelihood
function. Instead, we must settle for a local maximum. One approach to finding a local maximum of the likelihood is to use
a method like stochastic gradient descent on the negative log-likelihood, cf. Section 4. Here, we introduce an alternative,
powerful approach for finding local minima in latent variable models using an iterative procedure called Expectation–
Maximization (EM). Given an initial guess for the parameters ✓ (0), the EM algorithm iteratively generates new estimates
for the parameters ✓ (1), ✓ (2), Importantly, the likelihood is guaranteed to be non-decreasing under these iterations and
hence EM converges to a local maximum of the likelihood (Neal and Hinton, 1998).

The central observation underlying EM is that it is often much easier to calculate the conditional likelihoods of the
latent variables p̃(t)(Z) = p(Z|X; ✓ (t)) given some choice of parameters, and the maximum of the expected log likelihood
given an assignment of the latent variables: ✓ (t+1) = argmax✓ Ep(Z|X;✓ (t))[log p(X, Z; ✓)]. To get an intuition for this later
quantity notice that we can write

Ep̃(t) [log p(X, Z; ✓)] =

NX

i=1

KX

k=1

�
(t)
ik [logN (xi|µk,⌃ k) + log⇡k] , (153)

where we have used the shorthand �
(t)
ik = p(zik|X; ✓ (t)) with zik the kth component of zi. Taking the derivative of this

equation with respect to µk, ⌃ k, and ⇡k (subject to the constraint
P

k ⇡k = 1) and setting this to zero yields the intuitive
equations

µ
(t+1)
k =

PN
i �

(t)
ik xiP

i �
(t)
ik

⌃ (t+1)
k =

PN
i �

(t)
ik (xi � µk)(xi � µk)TP

i �
(t)
ik

⇡
(t+1)
k =

1
N

X

k

�
(t)
ik (154)

These are just the usual estimates for the mean and variance, with each data point weighed according to our current best
guess for the probability that it belongs to cluster k. We can then use our new estimate ✓ (t+1) to calculate responsibility
�

(t+1)
ik and repeat the process. This is essentially the K -Means algorithm discussed in the first section. Fig. 58 shows an

application of Gaussian mixture modelling to the Ising dataset.
This discussion of the Gaussian mixture model introduces several concepts that we will return to repeatedly in the

context of unsupervised learning. First, it is often useful to think of the visible correlations between features in the data
as resulting from hidden or latent variables. Second, we will often posit a generative model that encodes the structure
we think exists in the data and then find parameters that maximize the likelihood of the observed data. Third, often we
will not be able to directly estimate the MLE, and will have to instead look for a computationally efficient way to find a
local minimum of the likelihood.

13.3. Clustering in high dimensions

Clustering data in high-dimension can be very challenging. One major problem that is aggravated in high-dimensions
is the generic accumulation of noise due to random measurement error for each feature. This in turn leads to increased
errors for pairwise similarity and distance measures and thus tends to ‘‘blur’’ distances between data points (Domingos,
2012; Kriegel et al., 2009; Zimek et al., 2012). Many clustering algorithms rely on the explicit use of a similarity measure or
distance metrics that weigh all features equally. For this reason, one must be careful when using an off-the-shelf method
in high dimensions.

In order to perform clustering on high-dimensional data, it is often useful to denoise the data before proceeding with
using a standard clustering method such as K -means (Kriegel et al., 2009). Fig. 54 illustrates an application of denoising
to high-dimensional data. PCA (Section 12.2) was used to denoise the MNIST dataset by projecting the 784 original
dimensions onto the 40 dimensions with the largest principal components. The resulting features were then used to
construct a Euclidean distance matrix which was used by t-SNE to compute the two-dimensional embedding that is
presented. Using t-SNE directly on original data leads to a ‘‘blurring’’ of the clusters (the reader is encouraged to test this
themselves).

However, simple feature selection or feature denoising (using PCA for instance) can sometimes be insufficient for
learning clusters due to the presence of large variations in the signal and noise of the features that are relevant for
identifying the underlying clusters (Kriegel et al., 2009). Recent promising work suggests that one way to overcome these
limitations is to learn the latent space and the cluster labels at the same time (Xie et al., 2016).

Gaussian Mixture Model (GMM)
• Maximize the expected log likelihood given an assignment of the

latent variables:

 with the shorthand

• Setting the derivatives w.r.t. to zero subjected to the constraint

• These are the usual estimates for the mean and variances, with
each datapoint weighted according to our current best guess for the
probability that it belongs to cluster .

θ

k

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 81

where ✓ = {µk,⌃ k, ⇡k}. Once we know the MLEs ✓̂, we could use Eq. (151) to calculate the optimal hard cluster
assignment argmaxk �̂ (zk) where �̂ (zk) = p(zk = 1|x; ✓̂).

In practice, due to the complexity of Eq. (147), it is almost impossible to find the global maximum of the likelihood
function. Instead, we must settle for a local maximum. One approach to finding a local maximum of the likelihood is to use
a method like stochastic gradient descent on the negative log-likelihood, cf. Section 4. Here, we introduce an alternative,
powerful approach for finding local minima in latent variable models using an iterative procedure called Expectation–
Maximization (EM). Given an initial guess for the parameters ✓ (0), the EM algorithm iteratively generates new estimates
for the parameters ✓ (1), ✓ (2), Importantly, the likelihood is guaranteed to be non-decreasing under these iterations and
hence EM converges to a local maximum of the likelihood (Neal and Hinton, 1998).

The central observation underlying EM is that it is often much easier to calculate the conditional likelihoods of the
latent variables p̃(t)(Z) = p(Z|X; ✓ (t)) given some choice of parameters, and the maximum of the expected log likelihood
given an assignment of the latent variables: ✓ (t+1) = argmax✓ Ep(Z|X;✓ (t))[log p(X, Z; ✓)]. To get an intuition for this later
quantity notice that we can write

Ep̃(t) [log p(X, Z; ✓)] =

NX

i=1

KX

k=1

�
(t)
ik [logN (xi|µk,⌃ k) + log⇡k] , (153)

where we have used the shorthand �
(t)
ik = p(zik|X; ✓ (t)) with zik the kth component of zi. Taking the derivative of this

equation with respect to µk, ⌃ k, and ⇡k (subject to the constraint
P

k ⇡k = 1) and setting this to zero yields the intuitive
equations

µ
(t+1)
k =

PN
i �

(t)
ik xiP

i �
(t)
ik

⌃ (t+1)
k =

PN
i �

(t)
ik (xi � µk)(xi � µk)TP

i �
(t)
ik

⇡
(t+1)
k =

1
N

X

k

�
(t)
ik (154)

These are just the usual estimates for the mean and variance, with each data point weighed according to our current best
guess for the probability that it belongs to cluster k. We can then use our new estimate ✓ (t+1) to calculate responsibility
�

(t+1)
ik and repeat the process. This is essentially the K -Means algorithm discussed in the first section. Fig. 58 shows an

application of Gaussian mixture modelling to the Ising dataset.
This discussion of the Gaussian mixture model introduces several concepts that we will return to repeatedly in the

context of unsupervised learning. First, it is often useful to think of the visible correlations between features in the data
as resulting from hidden or latent variables. Second, we will often posit a generative model that encodes the structure
we think exists in the data and then find parameters that maximize the likelihood of the observed data. Third, often we
will not be able to directly estimate the MLE, and will have to instead look for a computationally efficient way to find a
local minimum of the likelihood.

13.3. Clustering in high dimensions

Clustering data in high-dimension can be very challenging. One major problem that is aggravated in high-dimensions
is the generic accumulation of noise due to random measurement error for each feature. This in turn leads to increased
errors for pairwise similarity and distance measures and thus tends to ‘‘blur’’ distances between data points (Domingos,
2012; Kriegel et al., 2009; Zimek et al., 2012). Many clustering algorithms rely on the explicit use of a similarity measure or
distance metrics that weigh all features equally. For this reason, one must be careful when using an off-the-shelf method
in high dimensions.

In order to perform clustering on high-dimensional data, it is often useful to denoise the data before proceeding with
using a standard clustering method such as K -means (Kriegel et al., 2009). Fig. 54 illustrates an application of denoising
to high-dimensional data. PCA (Section 12.2) was used to denoise the MNIST dataset by projecting the 784 original
dimensions onto the 40 dimensions with the largest principal components. The resulting features were then used to
construct a Euclidean distance matrix which was used by t-SNE to compute the two-dimensional embedding that is
presented. Using t-SNE directly on original data leads to a ‘‘blurring’’ of the clusters (the reader is encouraged to test this
themselves).

However, simple feature selection or feature denoising (using PCA for instance) can sometimes be insufficient for
learning clusters due to the presence of large variations in the signal and noise of the features that are relevant for
identifying the underlying clusters (Kriegel et al., 2009). Recent promising work suggests that one way to overcome these
limitations is to learn the latent space and the cluster labels at the same time (Xie et al., 2016).

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 81

where ✓ = {µk,⌃ k, ⇡k}. Once we know the MLEs ✓̂, we could use Eq. (151) to calculate the optimal hard cluster
assignment argmaxk �̂ (zk) where �̂ (zk) = p(zk = 1|x; ✓̂).

In practice, due to the complexity of Eq. (147), it is almost impossible to find the global maximum of the likelihood
function. Instead, we must settle for a local maximum. One approach to finding a local maximum of the likelihood is to use
a method like stochastic gradient descent on the negative log-likelihood, cf. Section 4. Here, we introduce an alternative,
powerful approach for finding local minima in latent variable models using an iterative procedure called Expectation–
Maximization (EM). Given an initial guess for the parameters ✓ (0), the EM algorithm iteratively generates new estimates
for the parameters ✓ (1), ✓ (2), Importantly, the likelihood is guaranteed to be non-decreasing under these iterations and
hence EM converges to a local maximum of the likelihood (Neal and Hinton, 1998).

The central observation underlying EM is that it is often much easier to calculate the conditional likelihoods of the
latent variables p̃(t)(Z) = p(Z|X; ✓ (t)) given some choice of parameters, and the maximum of the expected log likelihood
given an assignment of the latent variables: ✓ (t+1) = argmax✓ Ep(Z|X;✓ (t))[log p(X, Z; ✓)]. To get an intuition for this later
quantity notice that we can write

Ep̃(t) [log p(X, Z; ✓)] =

NX

i=1

KX

k=1

�
(t)
ik [logN (xi|µk,⌃ k) + log⇡k] , (153)

where we have used the shorthand �
(t)
ik = p(zik|X; ✓ (t)) with zik the kth component of zi. Taking the derivative of this

equation with respect to µk, ⌃ k, and ⇡k (subject to the constraint
P

k ⇡k = 1) and setting this to zero yields the intuitive
equations

µ
(t+1)
k =

PN
i �

(t)
ik xiP

i �
(t)
ik

⌃ (t+1)
k =

PN
i �

(t)
ik (xi � µk)(xi � µk)TP

i �
(t)
ik

⇡
(t+1)
k =

1
N

X

k

�
(t)
ik (154)

These are just the usual estimates for the mean and variance, with each data point weighed according to our current best
guess for the probability that it belongs to cluster k. We can then use our new estimate ✓ (t+1) to calculate responsibility
�

(t+1)
ik and repeat the process. This is essentially the K -Means algorithm discussed in the first section. Fig. 58 shows an

application of Gaussian mixture modelling to the Ising dataset.
This discussion of the Gaussian mixture model introduces several concepts that we will return to repeatedly in the

context of unsupervised learning. First, it is often useful to think of the visible correlations between features in the data
as resulting from hidden or latent variables. Second, we will often posit a generative model that encodes the structure
we think exists in the data and then find parameters that maximize the likelihood of the observed data. Third, often we
will not be able to directly estimate the MLE, and will have to instead look for a computationally efficient way to find a
local minimum of the likelihood.

13.3. Clustering in high dimensions

Clustering data in high-dimension can be very challenging. One major problem that is aggravated in high-dimensions
is the generic accumulation of noise due to random measurement error for each feature. This in turn leads to increased
errors for pairwise similarity and distance measures and thus tends to ‘‘blur’’ distances between data points (Domingos,
2012; Kriegel et al., 2009; Zimek et al., 2012). Many clustering algorithms rely on the explicit use of a similarity measure or
distance metrics that weigh all features equally. For this reason, one must be careful when using an off-the-shelf method
in high dimensions.

In order to perform clustering on high-dimensional data, it is often useful to denoise the data before proceeding with
using a standard clustering method such as K -means (Kriegel et al., 2009). Fig. 54 illustrates an application of denoising
to high-dimensional data. PCA (Section 12.2) was used to denoise the MNIST dataset by projecting the 784 original
dimensions onto the 40 dimensions with the largest principal components. The resulting features were then used to
construct a Euclidean distance matrix which was used by t-SNE to compute the two-dimensional embedding that is
presented. Using t-SNE directly on original data leads to a ‘‘blurring’’ of the clusters (the reader is encouraged to test this
themselves).

However, simple feature selection or feature denoising (using PCA for instance) can sometimes be insufficient for
learning clusters due to the presence of large variations in the signal and noise of the features that are relevant for
identifying the underlying clusters (Kriegel et al., 2009). Recent promising work suggests that one way to overcome these
limitations is to learn the latent space and the cluster labels at the same time (Xie et al., 2016).

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 81

where ✓ = {µk,⌃ k, ⇡k}. Once we know the MLEs ✓̂, we could use Eq. (151) to calculate the optimal hard cluster
assignment argmaxk �̂ (zk) where �̂ (zk) = p(zk = 1|x; ✓̂).

In practice, due to the complexity of Eq. (147), it is almost impossible to find the global maximum of the likelihood
function. Instead, we must settle for a local maximum. One approach to finding a local maximum of the likelihood is to use
a method like stochastic gradient descent on the negative log-likelihood, cf. Section 4. Here, we introduce an alternative,
powerful approach for finding local minima in latent variable models using an iterative procedure called Expectation–
Maximization (EM). Given an initial guess for the parameters ✓ (0), the EM algorithm iteratively generates new estimates
for the parameters ✓ (1), ✓ (2), Importantly, the likelihood is guaranteed to be non-decreasing under these iterations and
hence EM converges to a local maximum of the likelihood (Neal and Hinton, 1998).

The central observation underlying EM is that it is often much easier to calculate the conditional likelihoods of the
latent variables p̃(t)(Z) = p(Z|X; ✓ (t)) given some choice of parameters, and the maximum of the expected log likelihood
given an assignment of the latent variables: ✓ (t+1) = argmax✓ Ep(Z|X;✓ (t))[log p(X, Z; ✓)]. To get an intuition for this later
quantity notice that we can write

Ep̃(t) [log p(X, Z; ✓)] =

NX

i=1

KX

k=1

�
(t)
ik [logN (xi|µk,⌃ k) + log⇡k] , (153)

where we have used the shorthand �
(t)
ik = p(zik|X; ✓ (t)) with zik the kth component of zi. Taking the derivative of this

equation with respect to µk, ⌃ k, and ⇡k (subject to the constraint
P

k ⇡k = 1) and setting this to zero yields the intuitive
equations

µ
(t+1)
k =

PN
i �

(t)
ik xiP

i �
(t)
ik

⌃ (t+1)
k =

PN
i �

(t)
ik (xi � µk)(xi � µk)TP

i �
(t)
ik

⇡
(t+1)
k =

1
N

X

k

�
(t)
ik (154)

These are just the usual estimates for the mean and variance, with each data point weighed according to our current best
guess for the probability that it belongs to cluster k. We can then use our new estimate ✓ (t+1) to calculate responsibility
�

(t+1)
ik and repeat the process. This is essentially the K -Means algorithm discussed in the first section. Fig. 58 shows an

application of Gaussian mixture modelling to the Ising dataset.
This discussion of the Gaussian mixture model introduces several concepts that we will return to repeatedly in the

context of unsupervised learning. First, it is often useful to think of the visible correlations between features in the data
as resulting from hidden or latent variables. Second, we will often posit a generative model that encodes the structure
we think exists in the data and then find parameters that maximize the likelihood of the observed data. Third, often we
will not be able to directly estimate the MLE, and will have to instead look for a computationally efficient way to find a
local minimum of the likelihood.

13.3. Clustering in high dimensions

Clustering data in high-dimension can be very challenging. One major problem that is aggravated in high-dimensions
is the generic accumulation of noise due to random measurement error for each feature. This in turn leads to increased
errors for pairwise similarity and distance measures and thus tends to ‘‘blur’’ distances between data points (Domingos,
2012; Kriegel et al., 2009; Zimek et al., 2012). Many clustering algorithms rely on the explicit use of a similarity measure or
distance metrics that weigh all features equally. For this reason, one must be careful when using an off-the-shelf method
in high dimensions.

In order to perform clustering on high-dimensional data, it is often useful to denoise the data before proceeding with
using a standard clustering method such as K -means (Kriegel et al., 2009). Fig. 54 illustrates an application of denoising
to high-dimensional data. PCA (Section 12.2) was used to denoise the MNIST dataset by projecting the 784 original
dimensions onto the 40 dimensions with the largest principal components. The resulting features were then used to
construct a Euclidean distance matrix which was used by t-SNE to compute the two-dimensional embedding that is
presented. Using t-SNE directly on original data leads to a ‘‘blurring’’ of the clusters (the reader is encouraged to test this
themselves).

However, simple feature selection or feature denoising (using PCA for instance) can sometimes be insufficient for
learning clusters due to the presence of large variations in the signal and noise of the features that are relevant for
identifying the underlying clusters (Kriegel et al., 2009). Recent promising work suggests that one way to overcome these
limitations is to learn the latent space and the cluster labels at the same time (Xie et al., 2016).

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 81

where ✓ = {µk,⌃ k, ⇡k}. Once we know the MLEs ✓̂, we could use Eq. (151) to calculate the optimal hard cluster
assignment argmaxk �̂ (zk) where �̂ (zk) = p(zk = 1|x; ✓̂).

In practice, due to the complexity of Eq. (147), it is almost impossible to find the global maximum of the likelihood
function. Instead, we must settle for a local maximum. One approach to finding a local maximum of the likelihood is to use
a method like stochastic gradient descent on the negative log-likelihood, cf. Section 4. Here, we introduce an alternative,
powerful approach for finding local minima in latent variable models using an iterative procedure called Expectation–
Maximization (EM). Given an initial guess for the parameters ✓ (0), the EM algorithm iteratively generates new estimates
for the parameters ✓ (1), ✓ (2), Importantly, the likelihood is guaranteed to be non-decreasing under these iterations and
hence EM converges to a local maximum of the likelihood (Neal and Hinton, 1998).

The central observation underlying EM is that it is often much easier to calculate the conditional likelihoods of the
latent variables p̃(t)(Z) = p(Z|X; ✓ (t)) given some choice of parameters, and the maximum of the expected log likelihood
given an assignment of the latent variables: ✓ (t+1) = argmax✓ Ep(Z|X;✓ (t))[log p(X, Z; ✓)]. To get an intuition for this later
quantity notice that we can write

Ep̃(t) [log p(X, Z; ✓)] =

NX

i=1

KX

k=1

�
(t)
ik [logN (xi|µk,⌃ k) + log⇡k] , (153)

where we have used the shorthand �
(t)
ik = p(zik|X; ✓ (t)) with zik the kth component of zi. Taking the derivative of this

equation with respect to µk, ⌃ k, and ⇡k (subject to the constraint
P

k ⇡k = 1) and setting this to zero yields the intuitive
equations

µ
(t+1)
k =

PN
i �

(t)
ik xiP

i �
(t)
ik

⌃ (t+1)
k =

PN
i �

(t)
ik (xi � µk)(xi � µk)TP

i �
(t)
ik

⇡
(t+1)
k =

1
N

X

k

�
(t)
ik (154)

These are just the usual estimates for the mean and variance, with each data point weighed according to our current best
guess for the probability that it belongs to cluster k. We can then use our new estimate ✓ (t+1) to calculate responsibility
�

(t+1)
ik and repeat the process. This is essentially the K -Means algorithm discussed in the first section. Fig. 58 shows an

application of Gaussian mixture modelling to the Ising dataset.
This discussion of the Gaussian mixture model introduces several concepts that we will return to repeatedly in the

context of unsupervised learning. First, it is often useful to think of the visible correlations between features in the data
as resulting from hidden or latent variables. Second, we will often posit a generative model that encodes the structure
we think exists in the data and then find parameters that maximize the likelihood of the observed data. Third, often we
will not be able to directly estimate the MLE, and will have to instead look for a computationally efficient way to find a
local minimum of the likelihood.

13.3. Clustering in high dimensions

Clustering data in high-dimension can be very challenging. One major problem that is aggravated in high-dimensions
is the generic accumulation of noise due to random measurement error for each feature. This in turn leads to increased
errors for pairwise similarity and distance measures and thus tends to ‘‘blur’’ distances between data points (Domingos,
2012; Kriegel et al., 2009; Zimek et al., 2012). Many clustering algorithms rely on the explicit use of a similarity measure or
distance metrics that weigh all features equally. For this reason, one must be careful when using an off-the-shelf method
in high dimensions.

In order to perform clustering on high-dimensional data, it is often useful to denoise the data before proceeding with
using a standard clustering method such as K -means (Kriegel et al., 2009). Fig. 54 illustrates an application of denoising
to high-dimensional data. PCA (Section 12.2) was used to denoise the MNIST dataset by projecting the 784 original
dimensions onto the 40 dimensions with the largest principal components. The resulting features were then used to
construct a Euclidean distance matrix which was used by t-SNE to compute the two-dimensional embedding that is
presented. Using t-SNE directly on original data leads to a ‘‘blurring’’ of the clusters (the reader is encouraged to test this
themselves).

However, simple feature selection or feature denoising (using PCA for instance) can sometimes be insufficient for
learning clusters due to the presence of large variations in the signal and noise of the features that are relevant for
identifying the underlying clusters (Kriegel et al., 2009). Recent promising work suggests that one way to overcome these
limitations is to learn the latent space and the cluster labels at the same time (Xie et al., 2016).

Gaussian Mixture Model (GMM)
• Our new estimate is then used to calculate responsibility and

repeat the process (c.f. K-means algorithm).

• Application of GMM to the Ising dataset.

• General lessons:

• Useful to think of the correlations
between visible features as resulting
from latent variables.

• Posit a generative model and find
parameters that maximize the
likelihood of the observed data.

• Instead of directly estimate the MLE, use
computational efficient methods
e.g. EM equations.

θ(t+1) γ(t+1)
ik

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 79

Fig. 58. (a) Application of Gaussian mixture modeling to the Ising dataset. The normalized histogram corresponds to the first principal component
distribution of the dataset (or equivalently the magnetization in this case). The 1D data is fitted with a K = 3-component Gaussian mixture. The
likehood of the fitted Gaussian mixture is represented in red and is obtained via the expectation–maximization algorithm (b) The Gaussian mixture
model can be used to compute posterior probability (responsibilities), i.e. the probability of being in one of the phases. Note that the point where
� (1) = � (2) = � (3) can be interpreted as the critical point. Indeed the crossing occurs at T ⇡ 2.26.

! Return the cluster assignments C1, . . . , Ck, with k the number of clusters. Points that have not been assigned to a
cluster are considered noise or outliers.

Note that DBSCAN does not require the user to specify the number of clusters but only " and minPts. While, it is common
to heuristically fix these parameters, methods such as cross-validation can be used for their determination. Finally, we
note that DBSCAN is very efficient since efficient implementations have a computational cost of O(N logN).

13.2. Clustering and latent variables via the Gaussian mixture models

In the previous section, we introduced several practical methods for clustering. In this section, we will approach
clustering from a more abstract vantage point, and in the process, introduce many of the core ideas underlying
unsupervised learning. A central concept in many unsupervised learning techniques is the idea of a latent or hidden
variable. Even though latent variables are not directly observable, they still influence the visible structure of the data.
For example, in the context of clustering we can think of the cluster identity of each datapoint (i.e. which cluster does a
datapoint belong to) as a latent variable. And even though we cannot see the cluster label explicitly, we know that points
in the same cluster tend to be closer together. The latent variables in our data (cluster identity) are a way of representing
and abstracting the correlations between datapoints.

In this language, we can think of clustering as an algorithm to learn the most probable value of a latent variable
(cluster identity) associated with each datapoint. Calculating this latent variable requires additional assumptions about the
structure of our dataset. Like all unsupervised learning algorithms, in clustering we must make an assumption about the

Summary

• K-means clustering

• Agglomerative clustering

• Density-based (DB) clustering

• Gaussian mixture models

