
(Image: Fermilab/CERN)

PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 15: Variational methods & Mean Field Theory



Recap of Lecture 14

• K-means clustering 

• Agglomerative clustering

• Density-based (DB) clustering

• Gaussian mixture models 



Outline for today

• Autoencoder

• Variational methods and Mean Field Theory (MFT)

• Expectation-Maximization (EM)

References: 1803.08823, Deep Learning Book 
https://blog.keras.io/building-autoencoders-in-keras.html 



Autoencoder

• Autoencoder: Copy input to its output via bottleneck

• Very similar to PCA, but here: encoder and decoder can be non-
linear functions. 

h = f(x) g(h) = rx r

g( f(x)) = r

C = ∑
i

(xi − ri)2

Aim at reproducing input:
can be trained as a

neural network
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Fig. 27. Example architecture for an autoencoder.

This is sometimes called Gibbs sampling. In training RBMs, we would have to iterate xk until convergence for each input.
Since this is prohibitively expensive, one uses k-Contrastive Divergence (CD-k), which means that the sample is not
obtained upon convergence, but is taken after k iterations.

In practice, k = 1 already works very well, i.e. two forward–backward-passes (strictly speaking, the second backward
pass is not even used in the weight update). So, we start with x0, compute z1 from the forward pass, x1 in the backward
pass, and the corresponding z2 in the second forward pass. For the weight update, one compares the association
(activations) z1 caused by the actual input x0 with the association z2 caused by the reconstructed input x1. In more detail,
one defines for each connecting edge eµ⌫ between node `(0)⌫ and `(1)µ the quantities

pos(eµ⌫) = x0µz
1
⌫ , neg(eµ⌫) = x1µz

2
⌫ . (114)

Note that pos(eµ⌫) = 1 if both x0µ and z1⌫ are one. This thus measures the association between nodes which we want
the network to learn. Likewise, neg(eµ⌫) measures the association between nodes of the network based on its own
reconstructed input. The weight update is given by the difference between the two associations,

wij ! wµ⌫ + ↵(pos(eµ⌫) � neg(eµ⌫)) , (115)

where ↵ is the learning rate.
Deep Belief Networks (DBNs) [103] or deep Boltzmann machines are networks obtained from stacking RBMs, see

Fig. 26b. Using the procedure outlined above, DBNs can be pretrained layer-wise in an unsupervised fashion (aka their
weights can be initialized in a clever way). In greedy layer-wise unsupervised pretraining, one does not use the
actual output for training, but just the input. This is fed into the first layer and iterated back and forth until the value
ˆ̀(0) = (w(1))T`(1)+bO reconstructed from the activation `(1) = w(1) ·`(0)+bI by backpropagation approximates the original
input `(0). Once this is achieved, the same procedure is repeated for the weights w(2) of the next layer `(2) with `(1) as
input, and so on. The idea is that the weights after pretraining already approximate very well the distribution of the
input, which provides a promising starting point for minimizing the loss with respect to the actual output in supervised
training. After this pretraining phase, there can be a fine-tuning phase in supervised learning applications, where the DBN
is treated like a feed-forward NN and is trained with input–output pairs.

4.6. Autoencoders

As the name suggests, autoencoders learn to encode input. They are given a feature vector as input and are trained
to reproduce the exact same vector as output, i.e. to learn the identity function. However, the NN is designed such that
the information has to propagate through a deep NN whose intermediate layer(s) contain fewer nodes than the input
and output layer, cf. Fig. 27. Often, the NN architecture of autoencoders is symmetric, with the middle layer being the
smallest one, i.e. the bottleneck layer which the information has to pass through. Since the presence of the bottleneck
means that the NN has to learn to reproduce the input with far fewer features available, it is trained to efficiently
encode the information content of the feature space. Ultimately, one is not interested in the output (since this is just
the input, i.e. known data), but in the (compressed) data at the bottleneck layer. This hidden state of the NN is read out
and processed/used in further applications.

The types of activation functions used in autoencoders depend on the features at hand. If the input is an image, the
first part of the NN before the bottleneck can be chosen to be a typical CNN architecture, i.e. CNN layers followed by
leaky ReLU and max pooling, while the second part can consist of the inverse operations, i.e. deconvolutions. In other
cases, the activation functions might be chosen to be the same throughout the autoencoder (e.g. logistic sigmoid or tanh),
but the number of nodes decreases on the left-hand side, thus funneling the input towards the bottleneck, and then
increases again after the bottleneck, thus fanning out the compressed data.

Encoder Decoder



Autoencoder

• Non-linear function makes this more powerful: can copy 
everything in principle, but usually not in practice. 

• Ways around over-fitting:

• Regularization

• Encourage model to have further properties (e.g. variational 
autoencoder)

• Examples: Building an auto encoder for Ising and MNIST 
datasets: Notebooks 19 and 20:

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB20_CXVII-Keras_VAE_ising.html

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB19_CXVII-Keras_VAE_MNIST.html



Relative vs Absolute Probabilities

• Need to accurately represent the underlying probability distribution.

• Much easier to learn relative weights than absolute probabilities.

 where inverse temp. and energy of state .

• The partition function  is computationally intractable, e.g., the 
Ising model with  binary spins, trace involves summing  terms.

• Monte-Carlo based methods to draw samples from the underlying 
distribution and use these samples to estimate , e.g., Markov 
Chain Monte Carlo (MCMC) and annealed importance sampling.

β = E(x, θ) = x

Zp
N 2N

Zp

82 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Finally we end the clustering section with a short discussion on clustering validation, which can be particularly difficult
for high-dimensional data. Often clustering validation, i.e. verifying whether the obtained labels are ‘‘valid’’ is done by
direct visual inspection. That is, the data is represented in a low-dimensional space and the cluster labels obtained are
visually inspected to make sure that different labels organize into distinct ‘‘blobs’’. For high-dimensional data, this is done
by performing dimensional reduction (Section 12). However, this can lead to the appearance of spurious clusters since
dimensional reduction inevitably loses information about the original data. Thus, these methods should be used with care
when trying to validate clusters [see (Wattenberg et al., 2016) for an interactive discussion on how t-SNE can sometime
be misleading and how to effectively use it].

A lot of work has been done to devise ways of validating clusters based on various metrics and measures (Kriegel et al.,
2009). Perhaps one of the most intuitive way of defining a good clustering is by measuring how well clusters generalize.
Clustering methods based on leveraging powerful classifiers to measure the generalization errors of the clusters have been
developed by some of the authors (Day and Mehta, 2018), see https://pypi.org/project/hal-x/. We believe this represents
an especially promising research direction in high-dimensional clustering. Finally, we emphasize that this discussion is
far from exhaustive and we refer the reader to (Rokach and Maimon, 2005), Chapter 15, for an in-depth survey of the
various validation techniques.

14. Variational methods and mean-field theory (MFT)

A common thread in many unsupervised learning tasks is accurately representing the underlying probability distribu-
tion from which a dataset is drawn. Unsupervised learning of high-dimensional, complex distributions presents a new set
of technical and computational challenges that are different from those we encountered in a supervised learning setting.
When dealing with complicated probability distributions, it is often much easier to learn the relative weights of different
states or data points (ratio of probabilities), than absolute probabilities. In physics, this is the familiar statement that the
weights of a Boltzmann distribution are much easier to calculate than the partition function. The relative probability of
two configurations, x1 and x2, are proportional to the difference between their Boltzmann weights

p(x1)
p(x2)

= e��(E(x1)�E(x2)), (155)

where as is usual in statistical mechanics � is the inverse temperature and E(x; ✓ ) is the energy of state x given some
parameters (couplings) ✓ . However, calculating the absolute weight of a configuration requires knowledge of the partition
function

Zp = Trxe��E(x), (156)

(where the trace is taken over all possible configurations x) since

p(x) =
e��E(x)

Zp
. (157)

In general, calculating the partition function Zp is analytically and computationally intractable.
For example, for the Ising model with N binary spins, the trace involves calculating a sum over 2N terms, which is

a difficult task for most energy functions. For this reason, physicists (and machine learning scientists) have developed
various numerical and computational methods for evaluating such partition functions. One approach is to use Monte-Carlo
based methods to draw samples from the underlying distribution (this can be done knowing only the relative probabilities)
and then use these samples to numerically estimate the partition function. This is the philosophy behind powerful
methods such as Markov Chain Monte Carlo (MCMC) (Andrieu et al., 2003) and annealed importance sampling (Neal and
Hinton, 1998) which are widely used in both the statistical physics and machine learning communities. An alternative
approach – which we focus on here – is to approximate the probability distribution p(x) and partition function using
a ‘‘variational distribution’’ q(x; ✓q) whose partition function we can calculate exactly. The variational parameters ✓q are
chosen to make the variational distribution as close to the true distribution as possible (how this is done is the focus of
much of this section).

One of the most-widely applied examples of a variational method in statistical physics is Mean-Field Theory (MFT).
MFT can be naturally understood as a procedure for approximating the true distribution of the system by a factorized
distribution. The deep connection between MFT and variational methods is discussed below. These variational MFT
methods have been extended to understand more complicated spin models (also called graphical models in the ML
literature) and form the basis of powerful set of techniques that go under the name of Belief Propagation and Survey
Propagation (MacKay, 2003; Wainwright et al., 2008; Yedidia et al., 2003).

Variational methods are also widely used in ML to approximate complex probabilistic models. For example, below
we show how the Expectation–Maximization (EM) procedure, which we discussed in the context of Gaussian Mixture
Models for clustering, is actually a general method that can be derived for any latent (hidden) variable model using a
variational procedure (Neal and Hinton, 1998). This section serves as an introduction to this powerful class of variational
techniques. For readers interested in an in-depth discussion on variational inference for probabilistic graphical models,
we recommend the great treatise written by Michael I. Jordan and others (Jordan et al., 1999), the more physics oriented
discussion in (Yedidia, 2001; Yedidia et al., 2003), as well as David MacKay’s outstanding book (MacKay, 2003).
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Variational Methods

• Approximate the probability distribution  and partition function 
by a variational distribution  whose  can be calculated 
exactly;  is chosen to make  as much as possible.

• Mean-Field Theory (MFT): factorized distribution.

• Expectation-Maximization (EM): not only for GMM but a general 
variational method for latent (hidden) variables.

• First illustrate the idea of variational MFT with the Ising Model, and 
show how MFT can be formulated as an EM problem.

• Optimizing the approximate probability distribution amounts to 
minimizing the KL divergence . 

p(x)
q(x, θq) Zp

θq q(x, θ) ≈ p(x)

DKL(q | |p)



Ising Model
• The energy of a given spin configuration is given by the Hamiltonian:

•  are typically uniform, or in the case of disordered systems, 
drawn from some probability distribution (quenched disorder).

• Probability of finding the system in a given spin configuration:

• Subscript  of the partition function  corresponds to the 
probability distribution .

(Jij, hi)

p Zp(β, J)
p(s |β, J)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 83

14.1. Variational mean-field theory for the Ising model

Ising models are a major paradigm in statistical physics. Historically introduced to study magnetism, it was quickly
realized that their predictive power applies to a variety of interacting many-particle systems. Ising models are now
understood to serve as minimal models for complex phenomena such as certain classes of phase transitions. In the Ising
model, degrees of freedom called spins assume discrete, binary values, e.g. si = ±1. Each spin variable si lives on a
lattice (or, in general, a graph), the sites of which are labeled by i = 1, 2 . . . ,N . Despite the extreme simplicity relative
to real-world systems, Ising models exhibit a high level of intrinsic complexity, and the degrees of freedom can become
correlated in sophisticated ways. Often, spins interact spatially locally, and respond to externally applied magnetic fields.

A spin configuration s specifies the values si of the spins at every lattice site. We can assign an ‘‘energy’’ to every such
configuration

E(s, J ) = �
1
2

X

i,j

Jijsisj �
X

i

hisi, (158)

where hi is a local magnetic field applied to the spin si, and Jij is the interaction strength between the spins si and sj. In
textbook examples, the coupling parameters J = (J, h) are typically uniform or, in studies of disordered systems, (Ji, hi)
are drawn from some probability distribution (i.e. quenched disorder).

The probability of finding the system in a given spin configuration at temperature ��1 is given by

p(s|�, J ) =
1

Zp(J )
e��E(s,J ),

Zp(�, J ) =

X

{si=±1}

e��E(s,J ), (159)

with
P

{si=±1} denoting the sum over all possible configurations of the spin variables. We write Zp to emphasize that this
is the partition function corresponding to the probability distribution p(s|�, J ), which will become important later. For a
fixed number of lattice sites N , there are 2N possible configurations, a number that grows exponentially with the system
size. Therefore, it is not in general feasible to evaluate the partition function Zp(�, J ) in closed form. This represents a
major practical obstacle for extracting predictions from physical theories since the partition function is directly related
to the free-energy through the expression

�Fp(J ) = � log Zp(�, J ) = �hE(s, J )ip � Hp, (160)

with

Hp = �

X

{si=±1}

p(s|�, J ) log p(s|�, J ) (161)

the entropy of the probability distribution p(s|�, J ).
Even though the true probability distribution p(s|�, J ) may be a very complicated object, we can still make progress

by approximating p(s|�, J ) by a variational distribution q(s, ✓) which captures the essential features of interest, with ✓
some parameters that define our variational ansatz. The name variational distribution comes from the fact that we are
going to vary the parameters ✓ to make q(s, ✓) as close to p(s|�, J ) as possible. The functional form of q(s, ✓) is based
on an ‘‘educated guess’’, which oftentimes comes from our intuition about the problem. We can also define a variational
free-energy

�Fq(✓, J ) = �hE(s, J )iq � Hq, (162)

where hE(s, J )iq is the expectation value of the energy E(s, J ) with respect to the distribution q(s, ✓), and Hq is the entropy
of q(s, ✓).

Before proceeding further, it is helpful to introduce a new quantity: the Kullback–Leibler divergence (KL-divergence
or relative entropy) between two distributions p(x) and q(x). The KL-divergence measures the dissimilarity between the
two distributions and is given by

DKL(q||p) = Trxq(x) log
q(x)
p(x)

, (163)

which is the expectation w.r.t. q of the logarithmic difference between the two distributions p and q. The trace Trx denotes
a sum over all possible configurations x. Two important properties of the KL-divergence are (i) positivity: DKL(p||q) � 0
with equality if and only if p = q (in the sense of probability distributions), and (ii) DKL(p||q) 6= DKL(q||p), that is the
KL-divergence is not symmetric in its arguments.

Variational mean-field theory is a systematic way for constructing such an approximate distribution q(s, ✓). The main
idea is to choose parameters that minimize the difference between the variational free-energy Fq(J , ✓) and the true free-
energy Fp(J |�). We will show in Section 14.2 below that the difference between these two free-energies is actually the
KL-divergence:

Fq(J , ✓) = Fp(J , �) + DKL(q||p). (164)
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14.1. Variational mean-field theory for the Ising model

Ising models are a major paradigm in statistical physics. Historically introduced to study magnetism, it was quickly
realized that their predictive power applies to a variety of interacting many-particle systems. Ising models are now
understood to serve as minimal models for complex phenomena such as certain classes of phase transitions. In the Ising
model, degrees of freedom called spins assume discrete, binary values, e.g. si = ±1. Each spin variable si lives on a
lattice (or, in general, a graph), the sites of which are labeled by i = 1, 2 . . . ,N . Despite the extreme simplicity relative
to real-world systems, Ising models exhibit a high level of intrinsic complexity, and the degrees of freedom can become
correlated in sophisticated ways. Often, spins interact spatially locally, and respond to externally applied magnetic fields.

A spin configuration s specifies the values si of the spins at every lattice site. We can assign an ‘‘energy’’ to every such
configuration

E(s, J ) = �
1
2

X

i,j

Jijsisj �
X

i

hisi, (158)

where hi is a local magnetic field applied to the spin si, and Jij is the interaction strength between the spins si and sj. In
textbook examples, the coupling parameters J = (J, h) are typically uniform or, in studies of disordered systems, (Ji, hi)
are drawn from some probability distribution (i.e. quenched disorder).

The probability of finding the system in a given spin configuration at temperature ��1 is given by

p(s|�, J ) =
1

Zp(J )
e��E(s,J ),

Zp(�, J ) =

X

{si=±1}

e��E(s,J ), (159)

with
P

{si=±1} denoting the sum over all possible configurations of the spin variables. We write Zp to emphasize that this
is the partition function corresponding to the probability distribution p(s|�, J ), which will become important later. For a
fixed number of lattice sites N , there are 2N possible configurations, a number that grows exponentially with the system
size. Therefore, it is not in general feasible to evaluate the partition function Zp(�, J ) in closed form. This represents a
major practical obstacle for extracting predictions from physical theories since the partition function is directly related
to the free-energy through the expression

�Fp(J ) = � log Zp(�, J ) = �hE(s, J )ip � Hp, (160)

with

Hp = �

X

{si=±1}

p(s|�, J ) log p(s|�, J ) (161)

the entropy of the probability distribution p(s|�, J ).
Even though the true probability distribution p(s|�, J ) may be a very complicated object, we can still make progress

by approximating p(s|�, J ) by a variational distribution q(s, ✓) which captures the essential features of interest, with ✓
some parameters that define our variational ansatz. The name variational distribution comes from the fact that we are
going to vary the parameters ✓ to make q(s, ✓) as close to p(s|�, J ) as possible. The functional form of q(s, ✓) is based
on an ‘‘educated guess’’, which oftentimes comes from our intuition about the problem. We can also define a variational
free-energy
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where hE(s, J )iq is the expectation value of the energy E(s, J ) with respect to the distribution q(s, ✓), and Hq is the entropy
of q(s, ✓).

Before proceeding further, it is helpful to introduce a new quantity: the Kullback–Leibler divergence (KL-divergence
or relative entropy) between two distributions p(x) and q(x). The KL-divergence measures the dissimilarity between the
two distributions and is given by

DKL(q||p) = Trxq(x) log
q(x)
p(x)

, (163)
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This equality, when combined with the non-negativity of the KL-divergence has important consequences. First, it shows
that the variational free-energy is always larger than the true free-energy, Fq(J , ✓) � Fp(J ), with equality if and only if
q = p (the latter inequality is found in many physics textbooks and is known as the Gibbs inequality). Second, finding
the best variational free-energy is equivalent to minimizing the KL divergence DKL(q||p).

Armed with these observations, let us now derive a MFT of the Ising model using variational methods. In the simplest
MFT of the Ising model, the variational distribution is chosen so that all spins are independent:

q(s, ✓) =
1
Zq

exp

 
X

i

✓isi

!
=

Y

i

e✓isi

2 cosh ✓i
. (165)

In other words, we have chosen a distribution q which factorizes on every lattice site. An important property of this
functional form is that we can analytically find a closed-form expression for the variational partition function Zq. This
simplicity also comes at a cost: ignoring correlations between spins. These correlations become less and less important
in higher dimensions and the MFT ansatz becomes more accurate.

To evaluate the variational free-energy, we make use of Eq. (162). First, we need the entropy Hq of the distribution q.
Since q factorizes over the lattice sites, the entropy separates into a sum of one-body terms

Hq(✓) = �

X

{si=±1}

q(s, ✓) log q(s, ✓)

= �

X

i

qi log qi + (1 � qi) log(1 � qi), (166)

where qi =
e✓i

2 cosh ✓i
is the probability that spin si is in the +1 state. Next, we need to evaluate the average of the Ising

energy E(s, J ) with respect to the variational distribution q. Although the energy contains bilinear terms, we can still
evaluate this average easily, because the spins are independent (uncorrelated) in the q distribution. The mean value of
spin si in the q distribution, also known as the on-site magnetization, is given by

mi = hsiiq =

X

si=±1

si
e✓isi

2 cosh ✓i
= tanh(✓i). (167)

Since the spins are independent, we have

hE(s, J )iq = �
1
2

X

i,j

Jijmimj �
X

i

himi. (168)

The total variational free-energy is

�Fq(J , ✓) = �hE(s, J )iq � Hq,

and minimizing with respect to the variational parameters ✓, we obtain

@

@✓i
�Fq(J , ✓) = 2

dqi
d✓i

0

@��

2

4
X

j

Jijmj + hi

3

5+ ✓i

1

A . (169)

Setting this equation to zero, we arrive at

✓i = �
X

j

Jijmj(✓j) + hi. (170)

For the special case of a uniform field hi = h and uniform nearest neighbor couplings Jij = J , by symmetry the variational
parameters for all the spins are identical, with ✓i = ✓ for all i. Then, the mean-field equations reduce to their familiar
textbook form (Sethna, 2006), m = tanh(✓ ) and ✓ = �(zJm(✓ ) + h), where z is the coordination number of the lattice
(i.e. the number of nearest neighbors).

Eqs. (167) and (170) form a closed system, known as the mean-field equations for the Ising model. To find a solution
to these equations, one method is to iterate through and update each ✓i, once at a time, in an asynchronous fashion.
Once can see the emerging relationship of this approach to solving the MFT equations to Expectation–Maximization (EM)
procedure first introduced in the context of the K -means algorithm in Section 13.1. To make this explicit, let us spell out
the iterative procedure to find the solutions to Eq. (170). We start by initializing our variational parameters to some ✓(0)

and repeat the following two steps until convergence:
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In other words, we have chosen a distribution q which factorizes on every lattice site. An important property of this
functional form is that we can analytically find a closed-form expression for the variational partition function Zq. This
simplicity also comes at a cost: ignoring correlations between spins. These correlations become less and less important
in higher dimensions and the MFT ansatz becomes more accurate.

To evaluate the variational free-energy, we make use of Eq. (162). First, we need the entropy Hq of the distribution q.
Since q factorizes over the lattice sites, the entropy separates into a sum of one-body terms
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is the probability that spin si is in the +1 state. Next, we need to evaluate the average of the Ising

energy E(s, J ) with respect to the variational distribution q. Although the energy contains bilinear terms, we can still
evaluate this average easily, because the spins are independent (uncorrelated) in the q distribution. The mean value of
spin si in the q distribution, also known as the on-site magnetization, is given by
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The total variational free-energy is

�Fq(J , ✓) = �hE(s, J )iq � Hq,

and minimizing with respect to the variational parameters ✓, we obtain
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Setting this equation to zero, we arrive at
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For the special case of a uniform field hi = h and uniform nearest neighbor couplings Jij = J , by symmetry the variational
parameters for all the spins are identical, with ✓i = ✓ for all i. Then, the mean-field equations reduce to their familiar
textbook form (Sethna, 2006), m = tanh(✓ ) and ✓ = �(zJm(✓ ) + h), where z is the coordination number of the lattice
(i.e. the number of nearest neighbors).

Eqs. (167) and (170) form a closed system, known as the mean-field equations for the Ising model. To find a solution
to these equations, one method is to iterate through and update each ✓i, once at a time, in an asynchronous fashion.
Once can see the emerging relationship of this approach to solving the MFT equations to Expectation–Maximization (EM)
procedure first introduced in the context of the K -means algorithm in Section 13.1. To make this explicit, let us spell out
the iterative procedure to find the solutions to Eq. (170). We start by initializing our variational parameters to some ✓(0)

and repeat the following two steps until convergence:
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This equality, when combined with the non-negativity of the KL-divergence has important consequences. First, it shows
that the variational free-energy is always larger than the true free-energy, Fq(J , ✓) � Fp(J ), with equality if and only if
q = p (the latter inequality is found in many physics textbooks and is known as the Gibbs inequality). Second, finding
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For the special case of a uniform field hi = h and uniform nearest neighbor couplings Jij = J , by symmetry the variational
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textbook form (Sethna, 2006), m = tanh(✓ ) and ✓ = �(zJm(✓ ) + h), where z is the coordination number of the lattice
(i.e. the number of nearest neighbors).

Eqs. (167) and (170) form a closed system, known as the mean-field equations for the Ising model. To find a solution
to these equations, one method is to iterate through and update each ✓i, once at a time, in an asynchronous fashion.
Once can see the emerging relationship of this approach to solving the MFT equations to Expectation–Maximization (EM)
procedure first introduced in the context of the K -means algorithm in Section 13.1. To make this explicit, let us spell out
the iterative procedure to find the solutions to Eq. (170). We start by initializing our variational parameters to some ✓(0)
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For the special case of a uniform field hi = h and uniform nearest neighbor couplings Jij = J , by symmetry the variational
parameters for all the spins are identical, with ✓i = ✓ for all i. Then, the mean-field equations reduce to their familiar
textbook form (Sethna, 2006), m = tanh(✓ ) and ✓ = �(zJm(✓ ) + h), where z is the coordination number of the lattice
(i.e. the number of nearest neighbors).

Eqs. (167) and (170) form a closed system, known as the mean-field equations for the Ising model. To find a solution
to these equations, one method is to iterate through and update each ✓i, once at a time, in an asynchronous fashion.
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In other words, we have chosen a distribution q which factorizes on every lattice site. An important property of this
functional form is that we can analytically find a closed-form expression for the variational partition function Zq. This
simplicity also comes at a cost: ignoring correlations between spins. These correlations become less and less important
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is the probability that spin si is in the +1 state. Next, we need to evaluate the average of the Ising

energy E(s, J ) with respect to the variational distribution q. Although the energy contains bilinear terms, we can still
evaluate this average easily, because the spins are independent (uncorrelated) in the q distribution. The mean value of
spin si in the q distribution, also known as the on-site magnetization, is given by
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The total variational free-energy is
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Setting this equation to zero, we arrive at
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For the special case of a uniform field hi = h and uniform nearest neighbor couplings Jij = J , by symmetry the variational
parameters for all the spins are identical, with ✓i = ✓ for all i. Then, the mean-field equations reduce to their familiar
textbook form (Sethna, 2006), m = tanh(✓ ) and ✓ = �(zJm(✓ ) + h), where z is the coordination number of the lattice
(i.e. the number of nearest neighbors).

Eqs. (167) and (170) form a closed system, known as the mean-field equations for the Ising model. To find a solution
to these equations, one method is to iterate through and update each ✓i, once at a time, in an asynchronous fashion.
Once can see the emerging relationship of this approach to solving the MFT equations to Expectation–Maximization (EM)
procedure first introduced in the context of the K -means algorithm in Section 13.1. To make this explicit, let us spell out
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In other words, we have chosen a distribution q which factorizes on every lattice site. An important property of this
functional form is that we can analytically find a closed-form expression for the variational partition function Zq. This
simplicity also comes at a cost: ignoring correlations between spins. These correlations become less and less important
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The total variational free-energy is

�Fq(J , ✓) = �hE(s, J )iq � Hq,
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Setting this equation to zero, we arrive at
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For the special case of a uniform field hi = h and uniform nearest neighbor couplings Jij = J , by symmetry the variational
parameters for all the spins are identical, with ✓i = ✓ for all i. Then, the mean-field equations reduce to their familiar
textbook form (Sethna, 2006), m = tanh(✓ ) and ✓ = �(zJm(✓ ) + h), where z is the coordination number of the lattice
(i.e. the number of nearest neighbors).

Eqs. (167) and (170) form a closed system, known as the mean-field equations for the Ising model. To find a solution
to these equations, one method is to iterate through and update each ✓i, once at a time, in an asynchronous fashion.
Once can see the emerging relationship of this approach to solving the MFT equations to Expectation–Maximization (EM)
procedure first introduced in the context of the K -means algorithm in Section 13.1. To make this explicit, let us spell out
the iterative procedure to find the solutions to Eq. (170). We start by initializing our variational parameters to some ✓(0)
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In other words, we have chosen a distribution q which factorizes on every lattice site. An important property of this
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simplicity also comes at a cost: ignoring correlations between spins. These correlations become less and less important
in higher dimensions and the MFT ansatz becomes more accurate.
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The total variational free-energy is
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Setting this equation to zero, we arrive at
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For the special case of a uniform field hi = h and uniform nearest neighbor couplings Jij = J , by symmetry the variational
parameters for all the spins are identical, with ✓i = ✓ for all i. Then, the mean-field equations reduce to their familiar
textbook form (Sethna, 2006), m = tanh(✓ ) and ✓ = �(zJm(✓ ) + h), where z is the coordination number of the lattice
(i.e. the number of nearest neighbors).

Eqs. (167) and (170) form a closed system, known as the mean-field equations for the Ising model. To find a solution
to these equations, one method is to iterate through and update each ✓i, once at a time, in an asynchronous fashion.
Once can see the emerging relationship of this approach to solving the MFT equations to Expectation–Maximization (EM)
procedure first introduced in the context of the K -means algorithm in Section 13.1. To make this explicit, let us spell out
the iterative procedure to find the solutions to Eq. (170). We start by initializing our variational parameters to some ✓(0)

and repeat the following two steps until convergence:
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1. Expectation: Given a set of assignments at iteration t , ✓(t), calculate the corresponding magnetizations m(t) using
Eq. (167)

2. Maximization: Given a set of magnetizations mt , find new assignments ✓ (t+1) which minimize the variational free
energy Fq. From, Eq. (170) this is just

✓
(t+1)
i = �

X

j

Jijm
(t)
j + hi. (171)

From these equations, it is clear that we can think of the MFT of the Ising model as an EM-like procedure similar to the
one we used for K -means clustering and Gaussian Mixture Models in Section 13.

As is well known in statistical physics, even though MFT is not exact, it can often yield qualitatively and even
quantitatively precise predictions (especially in high dimensions). The discrepancy between the true physics and MFT
predictions stems from the fact that the variational distribution q we chose cannot capture correlations between the
spins. For instance, it predicts the wrong value for the critical temperature for the two-dimensional Ising model. It
even erroneously predicts the existence of a phase transition in one dimension at a non-zero temperature. We refer the
interested reader to standard textbooks on statistical physics for a detailed analysis of applicability of MFT to the Ising
model. However, we emphasize that the failure of any particular variational ansatz does not compromise the usefulness
of the approach. In some cases, one can consider changing the variational ansatz to improve the predictive properties of
the corresponding variational MFT (Yedidia, 2001; Yedidia et al., 2003). The take-home message is that variational MFT
is a powerful tool but one that must be applied and interpreted with care.

14.2. Expectation–Maximization (EM)

Ideas along the lines of variational MFT have been independently developed in statistics and imported into ma-
chine learning to perform maximum likelihood (ML) estimates. In this section, we explicitly derive the Expectation–
Maximization (EM) algorithm and demonstrate further its close relation to variational MFT (Neal and Hinton, 1998). We
will focus on latent variable models where some of the variables are hidden and cannot be directly observed. This often
makes maximum likelihood estimation difficult to implement. EM gets around this difficulty by using an iterative two-step
procedure, closely related to variational free-energy based approximation schemes in statistical physics.

To set the stage for the following discussion, let x be the set of visible variables we can directly observe and z be
the set of latent or hidden variables that we cannot directly observe. Denote the underlying probability distribution from
which x and z are drawn by p(z, x|✓), with ✓ representing all relevant parameters. Given a dataset x, we wish to find the
maximum likelihood estimate of the parameters ✓ that maximizes the probability of the observed data.

As in variational MFT, we view ✓ as variational parameters chosen to maximize the log-likelihood L(✓) = hlog p(x|✓)iPx ,
where the expectation is taken with respect to the marginal distributions of x. Algorithmically, this can be done by iterating
the variational parameters ✓(t) in a series of steps (t = 1, 2, . . . ) starting from some arbitrary initial value ✓(0):

1. Expectation step (E step): Given the known values of observed variable x and the current estimate of parameter
✓t�1, find the probability distribution of the latent variable z:

qt�1(z) = p(z|✓(t�1), x) (172)

2. Maximization step (M step): Re-estimate the parameter ✓(t) to be those with maximum likelihood, assuming
qt�1(z) found in the previous step is the true distribution of hidden variable z:

✓t = argmax
✓

hlog p(z, x|✓)iqt�1 (173)

It was shown (Dempster et al., 1977) that each EM iteration increases the true log-likelihood L(✓), or at worst leaves it
unchanged. In most models, this iteration procedure converges to a local maximum of L(✓).

To see how EM is actually performed and related to variational MFT, we make use of KL-divergence between two
distributions introduced in the last section. Recall that our goal is to maximize the log-likelihood L(✓). With data z missing,
we surely cannot just maximize L(✓) directly since parameter ✓ might couple both z and x. EM circumvents this by
optimizing another objective function, Fq(✓), constructed based on estimates of the hidden variable distribution q(z|x).
Indeed, the function optimized is none other than the variational free energy we encountered in the previous section:

Fq(✓) := �hlog p(z, x|✓)iq,Px � hHqiPx , (174)

where Hq is the Shannon entropy (defined in Eq. (161)) of q(z|x). One can define the true free-energy Fp(✓) as the negative
log-likelihood of the observed data:

�Fp(✓) = L(✓) = hlog p(x|✓)iPx . (175)

In the language of statistical physics, Fp(✓) is the true free-energy while Fq(✓) is the variational free-energy we would like
to minimize (see Table 1). Note that we have chosen to employ a physics sign convention here of defining the free-energy
as minus log of the partition function. In the ML literature, this minus sign is often omitted (Neal and Hinton, 1998) and
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Expectation-Maximization (EM)
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1. Expectation: Given a set of assignments at iteration t , ✓(t), calculate the corresponding magnetizations m(t) using
Eq. (167)

2. Maximization: Given a set of magnetizations mt , find new assignments ✓ (t+1) which minimize the variational free
energy Fq. From, Eq. (170) this is just
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From these equations, it is clear that we can think of the MFT of the Ising model as an EM-like procedure similar to the
one we used for K -means clustering and Gaussian Mixture Models in Section 13.

As is well known in statistical physics, even though MFT is not exact, it can often yield qualitatively and even
quantitatively precise predictions (especially in high dimensions). The discrepancy between the true physics and MFT
predictions stems from the fact that the variational distribution q we chose cannot capture correlations between the
spins. For instance, it predicts the wrong value for the critical temperature for the two-dimensional Ising model. It
even erroneously predicts the existence of a phase transition in one dimension at a non-zero temperature. We refer the
interested reader to standard textbooks on statistical physics for a detailed analysis of applicability of MFT to the Ising
model. However, we emphasize that the failure of any particular variational ansatz does not compromise the usefulness
of the approach. In some cases, one can consider changing the variational ansatz to improve the predictive properties of
the corresponding variational MFT (Yedidia, 2001; Yedidia et al., 2003). The take-home message is that variational MFT
is a powerful tool but one that must be applied and interpreted with care.

14.2. Expectation–Maximization (EM)

Ideas along the lines of variational MFT have been independently developed in statistics and imported into ma-
chine learning to perform maximum likelihood (ML) estimates. In this section, we explicitly derive the Expectation–
Maximization (EM) algorithm and demonstrate further its close relation to variational MFT (Neal and Hinton, 1998). We
will focus on latent variable models where some of the variables are hidden and cannot be directly observed. This often
makes maximum likelihood estimation difficult to implement. EM gets around this difficulty by using an iterative two-step
procedure, closely related to variational free-energy based approximation schemes in statistical physics.

To set the stage for the following discussion, let x be the set of visible variables we can directly observe and z be
the set of latent or hidden variables that we cannot directly observe. Denote the underlying probability distribution from
which x and z are drawn by p(z, x|✓), with ✓ representing all relevant parameters. Given a dataset x, we wish to find the
maximum likelihood estimate of the parameters ✓ that maximizes the probability of the observed data.

As in variational MFT, we view ✓ as variational parameters chosen to maximize the log-likelihood L(✓) = hlog p(x|✓)iPx ,
where the expectation is taken with respect to the marginal distributions of x. Algorithmically, this can be done by iterating
the variational parameters ✓(t) in a series of steps (t = 1, 2, . . . ) starting from some arbitrary initial value ✓(0):

1. Expectation step (E step): Given the known values of observed variable x and the current estimate of parameter
✓t�1, find the probability distribution of the latent variable z:

qt�1(z) = p(z|✓(t�1), x) (172)

2. Maximization step (M step): Re-estimate the parameter ✓(t) to be those with maximum likelihood, assuming
qt�1(z) found in the previous step is the true distribution of hidden variable z:

✓t = argmax
✓

hlog p(z, x|✓)iqt�1 (173)

It was shown (Dempster et al., 1977) that each EM iteration increases the true log-likelihood L(✓), or at worst leaves it
unchanged. In most models, this iteration procedure converges to a local maximum of L(✓).

To see how EM is actually performed and related to variational MFT, we make use of KL-divergence between two
distributions introduced in the last section. Recall that our goal is to maximize the log-likelihood L(✓). With data z missing,
we surely cannot just maximize L(✓) directly since parameter ✓ might couple both z and x. EM circumvents this by
optimizing another objective function, Fq(✓), constructed based on estimates of the hidden variable distribution q(z|x).
Indeed, the function optimized is none other than the variational free energy we encountered in the previous section:

Fq(✓) := �hlog p(z, x|✓)iq,Px � hHqiPx , (174)

where Hq is the Shannon entropy (defined in Eq. (161)) of q(z|x). One can define the true free-energy Fp(✓) as the negative
log-likelihood of the observed data:

�Fp(✓) = L(✓) = hlog p(x|✓)iPx . (175)

In the language of statistical physics, Fp(✓) is the true free-energy while Fq(✓) is the variational free-energy we would like
to minimize (see Table 1). Note that we have chosen to employ a physics sign convention here of defining the free-energy
as minus log of the partition function. In the ML literature, this minus sign is often omitted (Neal and Hinton, 1998) and
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From these equations, it is clear that we can think of the MFT of the Ising model as an EM-like procedure similar to the
one we used for K -means clustering and Gaussian Mixture Models in Section 13.

As is well known in statistical physics, even though MFT is not exact, it can often yield qualitatively and even
quantitatively precise predictions (especially in high dimensions). The discrepancy between the true physics and MFT
predictions stems from the fact that the variational distribution q we chose cannot capture correlations between the
spins. For instance, it predicts the wrong value for the critical temperature for the two-dimensional Ising model. It
even erroneously predicts the existence of a phase transition in one dimension at a non-zero temperature. We refer the
interested reader to standard textbooks on statistical physics for a detailed analysis of applicability of MFT to the Ising
model. However, we emphasize that the failure of any particular variational ansatz does not compromise the usefulness
of the approach. In some cases, one can consider changing the variational ansatz to improve the predictive properties of
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will focus on latent variable models where some of the variables are hidden and cannot be directly observed. This often
makes maximum likelihood estimation difficult to implement. EM gets around this difficulty by using an iterative two-step
procedure, closely related to variational free-energy based approximation schemes in statistical physics.

To set the stage for the following discussion, let x be the set of visible variables we can directly observe and z be
the set of latent or hidden variables that we cannot directly observe. Denote the underlying probability distribution from
which x and z are drawn by p(z, x|✓), with ✓ representing all relevant parameters. Given a dataset x, we wish to find the
maximum likelihood estimate of the parameters ✓ that maximizes the probability of the observed data.
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It was shown (Dempster et al., 1977) that each EM iteration increases the true log-likelihood L(✓), or at worst leaves it
unchanged. In most models, this iteration procedure converges to a local maximum of L(✓).
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distributions introduced in the last section. Recall that our goal is to maximize the log-likelihood L(✓). With data z missing,
we surely cannot just maximize L(✓) directly since parameter ✓ might couple both z and x. EM circumvents this by
optimizing another objective function, Fq(✓), constructed based on estimates of the hidden variable distribution q(z|x).
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From these equations, it is clear that we can think of the MFT of the Ising model as an EM-like procedure similar to the
one we used for K -means clustering and Gaussian Mixture Models in Section 13.

As is well known in statistical physics, even though MFT is not exact, it can often yield qualitatively and even
quantitatively precise predictions (especially in high dimensions). The discrepancy between the true physics and MFT
predictions stems from the fact that the variational distribution q we chose cannot capture correlations between the
spins. For instance, it predicts the wrong value for the critical temperature for the two-dimensional Ising model. It
even erroneously predicts the existence of a phase transition in one dimension at a non-zero temperature. We refer the
interested reader to standard textbooks on statistical physics for a detailed analysis of applicability of MFT to the Ising
model. However, we emphasize that the failure of any particular variational ansatz does not compromise the usefulness
of the approach. In some cases, one can consider changing the variational ansatz to improve the predictive properties of
the corresponding variational MFT (Yedidia, 2001; Yedidia et al., 2003). The take-home message is that variational MFT
is a powerful tool but one that must be applied and interpreted with care.
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Ideas along the lines of variational MFT have been independently developed in statistics and imported into ma-
chine learning to perform maximum likelihood (ML) estimates. In this section, we explicitly derive the Expectation–
Maximization (EM) algorithm and demonstrate further its close relation to variational MFT (Neal and Hinton, 1998). We
will focus on latent variable models where some of the variables are hidden and cannot be directly observed. This often
makes maximum likelihood estimation difficult to implement. EM gets around this difficulty by using an iterative two-step
procedure, closely related to variational free-energy based approximation schemes in statistical physics.

To set the stage for the following discussion, let x be the set of visible variables we can directly observe and z be
the set of latent or hidden variables that we cannot directly observe. Denote the underlying probability distribution from
which x and z are drawn by p(z, x|✓), with ✓ representing all relevant parameters. Given a dataset x, we wish to find the
maximum likelihood estimate of the parameters ✓ that maximizes the probability of the observed data.

As in variational MFT, we view ✓ as variational parameters chosen to maximize the log-likelihood L(✓) = hlog p(x|✓)iPx ,
where the expectation is taken with respect to the marginal distributions of x. Algorithmically, this can be done by iterating
the variational parameters ✓(t) in a series of steps (t = 1, 2, . . . ) starting from some arbitrary initial value ✓(0):

1. Expectation step (E step): Given the known values of observed variable x and the current estimate of parameter
✓t�1, find the probability distribution of the latent variable z:

qt�1(z) = p(z|✓(t�1), x) (172)

2. Maximization step (M step): Re-estimate the parameter ✓(t) to be those with maximum likelihood, assuming
qt�1(z) found in the previous step is the true distribution of hidden variable z:

✓t = argmax
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It was shown (Dempster et al., 1977) that each EM iteration increases the true log-likelihood L(✓), or at worst leaves it
unchanged. In most models, this iteration procedure converges to a local maximum of L(✓).

To see how EM is actually performed and related to variational MFT, we make use of KL-divergence between two
distributions introduced in the last section. Recall that our goal is to maximize the log-likelihood L(✓). With data z missing,
we surely cannot just maximize L(✓) directly since parameter ✓ might couple both z and x. EM circumvents this by
optimizing another objective function, Fq(✓), constructed based on estimates of the hidden variable distribution q(z|x).
Indeed, the function optimized is none other than the variational free energy we encountered in the previous section:

Fq(✓) := �hlog p(z, x|✓)iq,Px � hHqiPx , (174)

where Hq is the Shannon entropy (defined in Eq. (161)) of q(z|x). One can define the true free-energy Fp(✓) as the negative
log-likelihood of the observed data:

�Fp(✓) = L(✓) = hlog p(x|✓)iPx . (175)

In the language of statistical physics, Fp(✓) is the true free-energy while Fq(✓) is the variational free-energy we would like
to minimize (see Table 1). Note that we have chosen to employ a physics sign convention here of defining the free-energy
as minus log of the partition function. In the ML literature, this minus sign is often omitted (Neal and Hinton, 1998) and
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From these equations, it is clear that we can think of the MFT of the Ising model as an EM-like procedure similar to the
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It was shown (Dempster et al., 1977) that each EM iteration increases the true log-likelihood L(✓), or at worst leaves it
unchanged. In most models, this iteration procedure converges to a local maximum of L(✓).

To see how EM is actually performed and related to variational MFT, we make use of KL-divergence between two
distributions introduced in the last section. Recall that our goal is to maximize the log-likelihood L(✓). With data z missing,
we surely cannot just maximize L(✓) directly since parameter ✓ might couple both z and x. EM circumvents this by
optimizing another objective function, Fq(✓), constructed based on estimates of the hidden variable distribution q(z|x).
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Table 1
Analogy between quantities in statistical physics and variational EM.
Statistical physics Variational EM
Spins/d.o.f.: s Hidden/latent variables z
Couplings /quenched disorder: J Data observations: x
Boltzmann factor e��E(s,J ) Complete probability: p(x, z|✓)
Partition function: Z(J ) Marginal likelihood p(x|✓ )
Energy: �E(s, J ) Negative log-complete data likelihood: � log p(x, z|✓,m)
Free energy: �Fp(J |�) Negative log-marginal likelihood: � log p(x|m)
Variational distribution: q(s) Variational distribution: q(z|x)
Variational free-energy: Fq(J , ✓) Variational free-energy: Fq(✓)

this can lead to some confusion. Our goal is to choose ✓ so that our variational free-energy Fq(✓) is as close to the true
free-energy Fp(✓) as possible. The difference between these free-energies can be written as

Fq(✓) � Fp(✓) = hfq(x, ✓) � fp(x, ✓)iPx , (176)

where

fq(x, ✓) � fp(x, ✓)

= log p(x|✓) �

X

z

q(z|x) log p(z, x|✓)
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X

z

q(z|x) log q(z|x)
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X

z

q(z|x) log p(x|✓) �

X

z

q(z|x) log p(z, x|✓)

+

X

z

q(z|x) log q(z|x)

= �

X

z

q(z|x) log
p(z, x|✓)
p(x|✓)

+

X

z

q(z|x) log p̃(z)

=

X

z

q(z|x) log
q(z|x)

p(z|x, ✓)
= DKL(q(z|x)||p(z|x, ✓)) � 0

where we have used Bayes’ theorem p(z|x, ✓) = p(z, x|✓)/p(x|✓). Since the KL-divergence is always positive, this shows
that the variational free-energy Fq is always an upper bound of the true free-energy Fp. In physics, this result is known
as Gibbs’ inequality.

From Eq. (174) and the fact that the entropy term in Eq. (174) does not depend on ✓, we can immediately see that
the maximization step (M-step) in Eq. (173) is equivalent to minimizing the variational free-energy Fq(✓). Surprisingly,
the expectation step (E-step) can also viewed as the optimization of this variational free-energy. Concretely, one can
show that the distribution of hidden variables z given the observed variable x and the current estimate of parameter ✓,
Eq. (172), is the unique probability q(z) that minimizes Fq(✓) (now seen as a functional of q). This can be proved by taking
the functional derivative of Eq. (174), plus a Lagrange multiplier that encodes

P
z q(z) = 1, with respect to q(z). Summing

things up, we can re-write EM in the following form (Neal and Hinton, 1998):

1. Expectation step: Construct the approximating probability distribution of unobserved z given the values of observed
variable x and parameter estimate ✓(t�1):

qt�1(z) = argmin
q

Fq(✓(t�1)) (177)

2. Maximization step: Fix q, update the variational parameters:

✓(t)
= argmax

✓

�Fqt�1 (✓). (178)

To recapitulate, EM implements ML estimation even with missing or hidden variables through optimizing a lower
bound of the true log-likelihood. In statistical physics, this is reminiscent of optimizing a variational free-energy which is
a lower bound of true free-energy due to Gibbs inequality. In Fig. 59, we show pictorially how EM works. The E-step can
be seen as representing the unobserved variable z by a probability distribution q(z). This probability is used to construct
an alternative objective function �Fq(✓), which is then maximized with respect to ✓ in the M-step. By construction,
maximizing the negative variational free-energy is equivalent to doing ML estimation on the joint data (i.e. both observed
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an alternative objective function �Fq(✓), which is then maximized with respect to ✓ in the M-step. By construction,
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Eq. (172), is the unique probability q(z) that minimizes Fq(✓) (now seen as a functional of q). This can be proved by taking
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things up, we can re-write EM in the following form (Neal and Hinton, 1998):
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Eq. (172), is the unique probability q(z) that minimizes Fq(✓) (now seen as a functional of q). This can be proved by taking
the functional derivative of Eq. (174), plus a Lagrange multiplier that encodes

P
z q(z) = 1, with respect to q(z). Summing

things up, we can re-write EM in the following form (Neal and Hinton, 1998):

1. Expectation step: Construct the approximating probability distribution of unobserved z given the values of observed
variable x and parameter estimate ✓(t�1):

qt�1(z) = argmin
q

Fq(✓(t�1)) (177)

2. Maximization step: Fix q, update the variational parameters:

✓(t)
= argmax

✓

�Fqt�1 (✓). (178)

To recapitulate, EM implements ML estimation even with missing or hidden variables through optimizing a lower
bound of the true log-likelihood. In statistical physics, this is reminiscent of optimizing a variational free-energy which is
a lower bound of true free-energy due to Gibbs inequality. In Fig. 59, we show pictorially how EM works. The E-step can
be seen as representing the unobserved variable z by a probability distribution q(z). This probability is used to construct
an alternative objective function �Fq(✓), which is then maximized with respect to ✓ in the M-step. By construction,
maximizing the negative variational free-energy is equivalent to doing ML estimation on the joint data (i.e. both observed
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Variational distribution: q(s) Variational distribution: q(z|x)
Variational free-energy: Fq(J , ✓) Variational free-energy: Fq(✓)

this can lead to some confusion. Our goal is to choose ✓ so that our variational free-energy Fq(✓) is as close to the true
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To recapitulate, EM implements ML estimation even with missing or hidden variables through optimizing a lower
bound of the true log-likelihood. In statistical physics, this is reminiscent of optimizing a variational free-energy which is
a lower bound of true free-energy due to Gibbs inequality. In Fig. 59, we show pictorially how EM works. The E-step can
be seen as representing the unobserved variable z by a probability distribution q(z). This probability is used to construct
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where we have used Bayes’ theorem p(z|x, ✓) = p(z, x|✓)/p(x|✓). Since the KL-divergence is always positive, this shows
that the variational free-energy Fq is always an upper bound of the true free-energy Fp. In physics, this result is known
as Gibbs’ inequality.

From Eq. (174) and the fact that the entropy term in Eq. (174) does not depend on ✓, we can immediately see that
the maximization step (M-step) in Eq. (173) is equivalent to minimizing the variational free-energy Fq(✓). Surprisingly,
the expectation step (E-step) can also viewed as the optimization of this variational free-energy. Concretely, one can
show that the distribution of hidden variables z given the observed variable x and the current estimate of parameter ✓,
Eq. (172), is the unique probability q(z) that minimizes Fq(✓) (now seen as a functional of q). This can be proved by taking
the functional derivative of Eq. (174), plus a Lagrange multiplier that encodes
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things up, we can re-write EM in the following form (Neal and Hinton, 1998):

1. Expectation step: Construct the approximating probability distribution of unobserved z given the values of observed
variable x and parameter estimate ✓(t�1):
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2. Maximization step: Fix q, update the variational parameters:

✓(t)
= argmax
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�Fqt�1 (✓). (178)

To recapitulate, EM implements ML estimation even with missing or hidden variables through optimizing a lower
bound of the true log-likelihood. In statistical physics, this is reminiscent of optimizing a variational free-energy which is
a lower bound of true free-energy due to Gibbs inequality. In Fig. 59, we show pictorially how EM works. The E-step can
be seen as representing the unobserved variable z by a probability distribution q(z). This probability is used to construct
an alternative objective function �Fq(✓), which is then maximized with respect to ✓ in the M-step. By construction,
maximizing the negative variational free-energy is equivalent to doing ML estimation on the joint data (i.e. both observed
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this can lead to some confusion. Our goal is to choose ✓ so that our variational free-energy Fq(✓) is as close to the true
free-energy Fp(✓) as possible. The difference between these free-energies can be written as
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where we have used Bayes’ theorem p(z|x, ✓) = p(z, x|✓)/p(x|✓). Since the KL-divergence is always positive, this shows
that the variational free-energy Fq is always an upper bound of the true free-energy Fp. In physics, this result is known
as Gibbs’ inequality.

From Eq. (174) and the fact that the entropy term in Eq. (174) does not depend on ✓, we can immediately see that
the maximization step (M-step) in Eq. (173) is equivalent to minimizing the variational free-energy Fq(✓). Surprisingly,
the expectation step (E-step) can also viewed as the optimization of this variational free-energy. Concretely, one can
show that the distribution of hidden variables z given the observed variable x and the current estimate of parameter ✓,
Eq. (172), is the unique probability q(z) that minimizes Fq(✓) (now seen as a functional of q). This can be proved by taking
the functional derivative of Eq. (174), plus a Lagrange multiplier that encodes

P
z q(z) = 1, with respect to q(z). Summing

things up, we can re-write EM in the following form (Neal and Hinton, 1998):

1. Expectation step: Construct the approximating probability distribution of unobserved z given the values of observed
variable x and parameter estimate ✓(t�1):

qt�1(z) = argmin
q

Fq(✓(t�1)) (177)

2. Maximization step: Fix q, update the variational parameters:

✓(t)
= argmax
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�Fqt�1 (✓). (178)

To recapitulate, EM implements ML estimation even with missing or hidden variables through optimizing a lower
bound of the true log-likelihood. In statistical physics, this is reminiscent of optimizing a variational free-energy which is
a lower bound of true free-energy due to Gibbs inequality. In Fig. 59, we show pictorially how EM works. The E-step can
be seen as representing the unobserved variable z by a probability distribution q(z). This probability is used to construct
an alternative objective function �Fq(✓), which is then maximized with respect to ✓ in the M-step. By construction,
maximizing the negative variational free-energy is equivalent to doing ML estimation on the joint data (i.e. both observed
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1. Expectation: Given a set of assignments at iteration t , ✓(t), calculate the corresponding magnetizations m(t) using
Eq. (167)

2. Maximization: Given a set of magnetizations mt , find new assignments ✓ (t+1) which minimize the variational free
energy Fq. From, Eq. (170) this is just

✓
(t+1)
i = �

X

j

Jijm
(t)
j + hi. (171)

From these equations, it is clear that we can think of the MFT of the Ising model as an EM-like procedure similar to the
one we used for K -means clustering and Gaussian Mixture Models in Section 13.

As is well known in statistical physics, even though MFT is not exact, it can often yield qualitatively and even
quantitatively precise predictions (especially in high dimensions). The discrepancy between the true physics and MFT
predictions stems from the fact that the variational distribution q we chose cannot capture correlations between the
spins. For instance, it predicts the wrong value for the critical temperature for the two-dimensional Ising model. It
even erroneously predicts the existence of a phase transition in one dimension at a non-zero temperature. We refer the
interested reader to standard textbooks on statistical physics for a detailed analysis of applicability of MFT to the Ising
model. However, we emphasize that the failure of any particular variational ansatz does not compromise the usefulness
of the approach. In some cases, one can consider changing the variational ansatz to improve the predictive properties of
the corresponding variational MFT (Yedidia, 2001; Yedidia et al., 2003). The take-home message is that variational MFT
is a powerful tool but one that must be applied and interpreted with care.

14.2. Expectation–Maximization (EM)

Ideas along the lines of variational MFT have been independently developed in statistics and imported into ma-
chine learning to perform maximum likelihood (ML) estimates. In this section, we explicitly derive the Expectation–
Maximization (EM) algorithm and demonstrate further its close relation to variational MFT (Neal and Hinton, 1998). We
will focus on latent variable models where some of the variables are hidden and cannot be directly observed. This often
makes maximum likelihood estimation difficult to implement. EM gets around this difficulty by using an iterative two-step
procedure, closely related to variational free-energy based approximation schemes in statistical physics.

To set the stage for the following discussion, let x be the set of visible variables we can directly observe and z be
the set of latent or hidden variables that we cannot directly observe. Denote the underlying probability distribution from
which x and z are drawn by p(z, x|✓), with ✓ representing all relevant parameters. Given a dataset x, we wish to find the
maximum likelihood estimate of the parameters ✓ that maximizes the probability of the observed data.

As in variational MFT, we view ✓ as variational parameters chosen to maximize the log-likelihood L(✓) = hlog p(x|✓)iPx ,
where the expectation is taken with respect to the marginal distributions of x. Algorithmically, this can be done by iterating
the variational parameters ✓(t) in a series of steps (t = 1, 2, . . . ) starting from some arbitrary initial value ✓(0):

1. Expectation step (E step): Given the known values of observed variable x and the current estimate of parameter
✓t�1, find the probability distribution of the latent variable z:

qt�1(z) = p(z|✓(t�1), x) (172)

2. Maximization step (M step): Re-estimate the parameter ✓(t) to be those with maximum likelihood, assuming
qt�1(z) found in the previous step is the true distribution of hidden variable z:

✓t = argmax
✓

hlog p(z, x|✓)iqt�1 (173)

It was shown (Dempster et al., 1977) that each EM iteration increases the true log-likelihood L(✓), or at worst leaves it
unchanged. In most models, this iteration procedure converges to a local maximum of L(✓).

To see how EM is actually performed and related to variational MFT, we make use of KL-divergence between two
distributions introduced in the last section. Recall that our goal is to maximize the log-likelihood L(✓). With data z missing,
we surely cannot just maximize L(✓) directly since parameter ✓ might couple both z and x. EM circumvents this by
optimizing another objective function, Fq(✓), constructed based on estimates of the hidden variable distribution q(z|x).
Indeed, the function optimized is none other than the variational free energy we encountered in the previous section:

Fq(✓) := �hlog p(z, x|✓)iq,Px � hHqiPx , (174)

where Hq is the Shannon entropy (defined in Eq. (161)) of q(z|x). One can define the true free-energy Fp(✓) as the negative
log-likelihood of the observed data:

�Fp(✓) = L(✓) = hlog p(x|✓)iPx . (175)

In the language of statistical physics, Fp(✓) is the true free-energy while Fq(✓) is the variational free-energy we would like
to minimize (see Table 1). Note that we have chosen to employ a physics sign convention here of defining the free-energy
as minus log of the partition function. In the ML literature, this minus sign is often omitted (Neal and Hinton, 1998) and

−log p(z |θ, x) + log q(z) + 1 + λ = 0 ⇒ q(z) ∝ p(z |θ, x)
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free-energy Fp(✓) as possible. The difference between these free-energies can be written as
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where we have used Bayes’ theorem p(z|x, ✓) = p(z, x|✓)/p(x|✓). Since the KL-divergence is always positive, this shows
that the variational free-energy Fq is always an upper bound of the true free-energy Fp. In physics, this result is known
as Gibbs’ inequality.

From Eq. (174) and the fact that the entropy term in Eq. (174) does not depend on ✓, we can immediately see that
the maximization step (M-step) in Eq. (173) is equivalent to minimizing the variational free-energy Fq(✓). Surprisingly,
the expectation step (E-step) can also viewed as the optimization of this variational free-energy. Concretely, one can
show that the distribution of hidden variables z given the observed variable x and the current estimate of parameter ✓,
Eq. (172), is the unique probability q(z) that minimizes Fq(✓) (now seen as a functional of q). This can be proved by taking
the functional derivative of Eq. (174), plus a Lagrange multiplier that encodes

P
z q(z) = 1, with respect to q(z). Summing

things up, we can re-write EM in the following form (Neal and Hinton, 1998):

1. Expectation step: Construct the approximating probability distribution of unobserved z given the values of observed
variable x and parameter estimate ✓(t�1):

qt�1(z) = argmin
q

Fq(✓(t�1)) (177)

2. Maximization step: Fix q, update the variational parameters:

✓(t)
= argmax
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�Fqt�1 (✓). (178)

To recapitulate, EM implements ML estimation even with missing or hidden variables through optimizing a lower
bound of the true log-likelihood. In statistical physics, this is reminiscent of optimizing a variational free-energy which is
a lower bound of true free-energy due to Gibbs inequality. In Fig. 59, we show pictorially how EM works. The E-step can
be seen as representing the unobserved variable z by a probability distribution q(z). This probability is used to construct
an alternative objective function �Fq(✓), which is then maximized with respect to ✓ in the M-step. By construction,
maximizing the negative variational free-energy is equivalent to doing ML estimation on the joint data (i.e. both observed
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Fig. 59. Convergence of EM algorithm. Starting from ✓(t) , E-step (blue) establishes �Fq(✓(t)) which is always a lower bound of �Fp := hlog p(x|✓)iPx
(green). M-step (red) is then applied to update the parameter, yielding ✓(t+1). The updated parameter ✓(t+1) is then used to construct �Fq(✓(t+1)) in
the subsequent E-step. M-step is performed again to update the parameter, etc.

and unobserved). The name ‘‘M-step’’ is intuitive since the parameters ✓ are found by maximizing �Fq(✓). The name
‘‘E-step’’ comes from the fact that one usually does not need to construct the probability of missing data explicitly, but
rather need only compute the ‘‘expected" sufficient statistics over these data, cf. Fig. 59.

On the practical side, EM has been demonstrated to be extremely useful in parameter estimation, particularly in hidden
Markov models and Bayesian networks (see, for example, (Barber, 2012; Wainwright et al., 2008)). Some of the authors
have used EM in biophysics, to design algorithms which establish the equivalence of niche theory and the Minimum
Environmental Perturbation Principle (Marsland et al., 2019). One of the striking advantages of EM is that it is conceptually
simple and easy to implement (see Notebook 16). In many cases, implementation of EM is guaranteed to increase the
likelihood monotonically, which could be a perk during debugging. For readers interested in an overview on applications
of EM, we recommend (Do and Batzoglou, 2008).

Finally for advanced readers familiar with the physics of disordered systems, we note that it is possible to construct
a one-to-one dictionary between EM for latent variable models and the MFT of spin systems with quenched disorder.
In a disordered spin systems, the Ising couplings J are commonly taken to be quenched random variables drawn from
some underlying probability distribution. In the EM procedure, the quenched disorder is provided by the observed data
points x which are drawn from some underlying probability distribution that characterizes the data. The spins s are like
the hidden or latent variables z . Similar analogues can be found for all the variational MFT quantities (see Table 1). This
striking correspondence offers a glimpse into the deep connection between statistical mechanics and unsupervised latent
variable models – a connection that we will repeatedly exploit to gain more intuition for the energy-based unsupervised
models considered in the next few chapters.

15. Energy based models: Maximum entropy (MaxEnt) principle, generative models, and Boltzmann learning

Most of the models discussed in the previous sections (e.g. linear and logistic regression, ensemble models, and
supervised neural networks) are discriminative – they are designed to perceive differences between groups or categories
of data. For example, recognizing differences between images of cats and images of dogs allows a discriminative model to
label an image as ‘‘cat’’ or ‘‘dog’’. Discriminative models form the core techniques of most supervised learning methods.
However, discriminative methods have several limitations. First, like all supervised learning methods, they require labeled
data. Second, there are tasks that discriminative approaches simply cannot accomplish, such as drawing new examples
from an unknown probability distribution. A model that can learn to represent and sample from a probability distribution
is called generative. For example, a generative model for images would learn to draw new examples of cats and dogs given
a dataset of images of cats and dogs. Similarly, given samples generated from one phase of an Ising model we may want to
generate new samples from that phase. Such tasks are clearly beyond the scope of discriminative models like the ensemble
models and DNNs discussed so far in the review. Instead, we must turn to a new class of machine learning methods.

The goal of this section is to introduce the reader to energy-based generative models. As we will see, energy-based
models are closely related to the kinds of models commonly encountered in statistical physics. We will draw upon
many techniques that have their origin in statistical mechanics (e.g. Monte-Carlo methods). The section starts with a
brief overview of generative models, highlighting the similarities and differences with the supervised learning methods
encountered in earlier sections. Next, we introduce perhaps the simplest kind of generative models — Maximum Entropy
(MaxEnt) models. MaxEnt models have no latent (or hidden) variables, making them ideal for introducing the key concepts
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Variational free-energy: Fq(J , ✓) Variational free-energy: Fq(✓)

this can lead to some confusion. Our goal is to choose ✓ so that our variational free-energy Fq(✓) is as close to the true
free-energy Fp(✓) as possible. The difference between these free-energies can be written as

Fq(✓) � Fp(✓) = hfq(x, ✓) � fp(x, ✓)iPx , (176)

where

fq(x, ✓) � fp(x, ✓)

= log p(x|✓) �
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p(z|x, ✓)
= DKL(q(z|x)||p(z|x, ✓)) � 0

where we have used Bayes’ theorem p(z|x, ✓) = p(z, x|✓)/p(x|✓). Since the KL-divergence is always positive, this shows
that the variational free-energy Fq is always an upper bound of the true free-energy Fp. In physics, this result is known
as Gibbs’ inequality.

From Eq. (174) and the fact that the entropy term in Eq. (174) does not depend on ✓, we can immediately see that
the maximization step (M-step) in Eq. (173) is equivalent to minimizing the variational free-energy Fq(✓). Surprisingly,
the expectation step (E-step) can also viewed as the optimization of this variational free-energy. Concretely, one can
show that the distribution of hidden variables z given the observed variable x and the current estimate of parameter ✓,
Eq. (172), is the unique probability q(z) that minimizes Fq(✓) (now seen as a functional of q). This can be proved by taking
the functional derivative of Eq. (174), plus a Lagrange multiplier that encodes

P
z q(z) = 1, with respect to q(z). Summing

things up, we can re-write EM in the following form (Neal and Hinton, 1998):

1. Expectation step: Construct the approximating probability distribution of unobserved z given the values of observed
variable x and parameter estimate ✓(t�1):

qt�1(z) = argmin
q

Fq(✓(t�1)) (177)

2. Maximization step: Fix q, update the variational parameters:

✓(t)
= argmax

✓

�Fqt�1 (✓). (178)

To recapitulate, EM implements ML estimation even with missing or hidden variables through optimizing a lower
bound of the true log-likelihood. In statistical physics, this is reminiscent of optimizing a variational free-energy which is
a lower bound of true free-energy due to Gibbs inequality. In Fig. 59, we show pictorially how EM works. The E-step can
be seen as representing the unobserved variable z by a probability distribution q(z). This probability is used to construct
an alternative objective function �Fq(✓), which is then maximized with respect to ✓ in the M-step. By construction,
maximizing the negative variational free-energy is equivalent to doing ML estimation on the joint data (i.e. both observed

Experiment with the python notebook:
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB16_CXIII-EM_coin_toss.html

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB16_CXIII-EM_coin_toss.html


Summary

• Autoencoder

• Variational methods and Mean Field Theory (MFT)

• Expectation-Maximization (EM)


