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Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 15: Variational methods & Mean Field Theory



Recap of Lecture 14

K-means clustering
Agglomerative clustering
Density-based (DB) clustering

Gaussian mixture models



Outline for today

e Autoencoder
e Variational methods and Mean Field Theory (MFT)

» Expectation-Maximization (EM)

References: 1803.08823, Deep Learning Book
https://blog.keras.io/building-autoencoders-in-keras.html



Autoencoder

e Autoencoder: Copy input to its output via bottleneck

g(fx)) =r

C=) (x—r)

Tnput owom Alm at reproducing input:
Encoder Decoder can be trained as a

X h = f(x) g(h)=r r neural network

* Very similar to PCA, but here: encoder and decoder can be non-
linear functions.



Autoencoder

* Non-linear function makes this more powerful: can copy
everything in principle, but usually not in practice.

 Ways around over-fitting:
* Regularization

 Encourage model to have further properties (e.g. variational
autoencoder)

 Examples: Building an auto encoder for Ising and MNIST
datasets: Notebooks 19 and 20:

https:/physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB19_CXVIIl-Keras_VAE_MNIST.html

https:/physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB20_CXVII-Keras_VAE_ising.html



Relative vs Absolute Probabilities

Need to accurately represent the underlying probability distribution.

Much easier to learn relative weights than absolute probabilities.

e_IBE(x)
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where f = inverse temp. and E(x, #) = energy of state X.

The partition function Z, is computationally intractable, e.g., the
Ising model with N binary spins, trace involves summing 2" terms.

Monte-Carlo based methods to draw samples from the underlying
distribution and use these samples to estimate Z, €.g. Markov

Chain Monte Carlo (MCMC) and annealed importance sampling.



Variational Methods

Approximate the probability distribution p(X) and partition function
by a variational distribution g(X, 6’q) whose Z, can be calculated

exactly; 6’61 is chosen to make g(x, 0) ~ p(X) as much as possible.

Mean-Field Theory (MFT): factorized distribution.

Expectation-Maximization (EM): not only for GMM but a general
variational method for latent (hidden) variables.

First illustrate the idea of variational MFT with the Ising Model, and
show how MFT can be formulated as an EM problem.

Optimizing the approximate probability distribution amounts to
minimizing the KL divergence Dy;(q||p).



Ising Model

The energy of a given spin configuration is given by the Hamiltonian:
1
E(s,J) = —3 Z]ijsisj — Z hisi,
1,] 1

(J;, h;) are typically uniform, or in the case of disordered systems,
drawn from some probability distribution (quenched disorder).

Probability of finding the system in a given spin configuration:

1
_ ____ a—BE(sJ)

Z(B.J) = ) e P,

{si==%1}

Subscript p of the partition function Z (g, J) corresponds to the
probability distribution p(s|f,J).



Ising Model

In general not possible to evaluate the sum of 2% terms of Zp(,ﬁ, J)
In closed form = represents challenges for extracting physics e.g.

Free energy: BE,(J) = —logZy(B.J) = B{E(s.]))p — Hp,
with
Entropy: Hy=— Y p(s|B.J)logp(s|B.J)

{si==1}

Idea: approximate p(s |/, J) by a variational distribution ¢g(s, &) and
vary 6 to make the two distributions as closed as possible.

Variational free energy:

IBFQ(O’]) — IB<E(S’.’)>q T an



Ising Model

Recall that the KL divergence has the following properties:
e Positivity: Dy, (p||g) = 0 with equality iff p = g.

* Asymmetry: Dy;(p||q) # Dk (q||p).

Positivity implies that F, (J, 0) > F,(J, 0) with equality iff g = p (in the
sense of distribution); best variational free energy minimizes Dy, (q ]| |p).

In MFT, g(s, 0) is taken to be a factorized distribution:

0;si

1 e
$,0) = — 0isi | =
. 0) Z, =P <Zl: 151) 1_[ 2 cosh 6;

i

This simplification enables closed form expressions. Drawback is
ignoring correlations between spins (less important for large N).



Ising Model

« With the MFT ansatz, the entropy Hq of the distribution g:

Hy(0) = — ) q(s, 6)log (s, 6)

{si==%1}
el

— _ Zqi log g; + (1 — qi)log(1 — qi), where ¢; = 557
i

e The mean value of §; (on-site magnetization):

elisi

m; = (Sj)q = Z Si2cosh 7 = tanh(6;).
1

si==%1

 Because the spins are independent, the average energy is simple:

1
(E(s,]))q = —3 Z]ijmimj — Z him;.
1.j i

* The total variational free-energy. BF,J.0) = B(E(s.]))q — H,



Ising Model

« Minimizing the variational free-energy with respect to 6:

d dq;
0= 75PRU.0) =2 (—ﬂ JZ_Jijmj + by +el-) =  6,=p Z Jimi(6)) + h.
_ — J

 For uniform couplings, h. = hand J.. = J = 6. = 0 by symmetry &
I ij I

m = tanh(0) and 0 = B(zJm(0) + h), where z is the coordination number of the lattice
(1.e. the number of nearest neighbors)

e The MFT of Ising Model can be formulated as an EM procedure,
similar to GMM and K-means clustering discussed earlier:

1. Expectation: Given a set of assignments at iteration t, 8, calculate the corresponding magnetizations m( using

Eq. (167)
2. Maximization: Given a set of magnetizations m;, find new assignments ‘"1 which minimize the variational free

energy F,. From, Eq. (170) this is just
ot =By Jym + hy.



Drawbacks of MFT

 Cannot capture correlations between the spins, leading to
* Wrong value of the critical temperature for the 2D Ising Model.

* Erroneously predicts the existence of a phase transition in one
dimension at a non-zero temperature.

 Despite these drawbacks, MFT often yield qualitatively and even
guantitatively precise predictions (especially in high dimensions).

* lllustrate the general relation between variational methods and the
EM procedure.



Expectation-Maximization (EM)

e Variational MFT has been developed to perform MLE. Its close
relationship with EM was worked out in

e [atent variables make MLE difficult to implement. EM gets around
this difficulty by using an iterative two-step procedure.

e Let X = set of visible variables, Z = set of latent variables,
p(z, X | @)= probability distribution from which X and z are drawn.

« Since we can only observe X, we wish to find the parameters 6 that
maximizes the probability of the observed data:

L(O) = (lqg p(x10))p, log likelihood



Expectation-Maximization (EM)

o Initialize 8 and iterating the variational parameters 00 t=12....

1. Expectation step (E step): Given the known values of observed variable x* and the current estimate of parameter
0;_1, find the probability distribution of the latent variable z:

Gr_1(z) = p(z|6" ", x)

2. Maximization step (M step): Re-estimate the parameter 6\ to be those with maximum likelihood, assuming
d:—1(z) found in the previous step is the true distribution of hidden variable z:

0; = arg ;nax(logp(z, X(0))q,_.

« EM iteration increases the true log-likelihood L(8), or at worst
leaves it unchanged. In most models, this iteration procedure
converges to a local maximum of L(6).

« With data z missing, we cannot just maximize L(6) directly since
parameter 6 might couple both z and X.



Expectation-Maximization (EM)

Idea: optimizing another objective function, F (0), constructed based
on estimates of the hidden variable distribution g(z | X).

This objective function is the variational free energy:

Fq(o) = —(log p(z, x|0)>q,Px — (Hyg)p,

The true free-energy is:

—Fy(0) = L(0) = (log p(x]0))p, -

This minus sign is chosen because the free-energy is minus log of
the partition function, often omitted in the ML literature (be cautious).



Expectation-Maximization (EM)
* Minimizing the difference F,(0) — F,(0) = (f,(x, 8) — f,(x, 0))p,

where f;(x, 0) — f,(x, 0) = logp(x10) — Zq z|x)logp(z, x10) + Y _q(zlx)logq(z|x)

1
I
= Z q(z|x)log p(x|0) — Zq z|x)logp(z, x|0) -+ Zq z|x)logq(z|x)

_ log P2 X10) | Note typo in
Using Bayes’ theorem\ 208 gy 2 AR o 08823

p(z|x, 0) = p(z, x|0)/p(x|0)
_ Zq z|x) log |2lx‘)9)
= DKL( (z |x)||p(z|x 0)) >

 We thus prove our earlier assertion that the difference between the
approximate and the true distributions is the KL divergence.

 The variational free energy is an upper bound for true free-energy.



Expectation-Maximization (EM)

 Since H, does not depend on 0, the M-step is equivalent to
minimizing the variational free-energy F (0).

* Less obvious is that the E-step can also viewed as the optimization
of this variational free-energy. It turns out:

qr—1(z) = p(z|6" Y, x)

is the unique probability that minimizes F,(6) (now seen as a
functional of g). Hint: taking the functional derivative of F q(ﬁ) plus a
Lagrange multiplier A (that enforces )’ g(z) = 1) w.r.t. ¢(2):

—logp(z|0,x) +1logqg(z) + 1 +1=0= qg(z) x p(z|0,Xx)

 The normalization condition enforced by the Lagrange multiplier
implies g(z) = p(z| 6, X). More details in



Expectation-Maximization (EM)

1. Expectation step: Construct the approximating probability distribution of unobserved z given the values of observed
variable x and parameter estimate 6~V

g;—1(z) = arg min Fq(O(t_l))
q

2. Maximization step: Fix g, update the variational parameters:

0"") = argmax —F,,_,(9).
6




Expectation-Maximization (EM)

Table 1

Analogy between quantities in statistical physics and variational EM.

Statistical physics Variational EM

Spins/d.o.f.: s Hidden/latent variables z

Couplings /quenched disorder: J Data observations: x

Boltzmann factor e PEGJ) Complete probability: p(x, z|6)

Partition function: Z(J) Marginal likelihood p(x|0)

Energy: BE(s,]) Negative log-complete data likelihood: — log p(x, z|0, m)
Free energy: BF,(J|B) Negative log-marginal likelihood: — log p(x|m)
Variational distribution: q(s) Variational distribution: g(z|x)

Variational free-energy: F;(J, 0) Variational free-energy: F,(0)

Experiment with the python notebook:

https:/physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB16_CXIII-EM_coin_toss.html



https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB16_CXIII-EM_coin_toss.html

Summary

e Autoencoder
e Variational methods and Mean Field Theory (MFT)

e Expectation-Maximization (EM)



