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Lecture 16: Generative Adversarial Networks



Recap of Lecture 15

• Autoencoder

• Variational methods and Mean Field Theory (MFT)

• Expectation-Maximization (EM)



Outline for today

• Generative Adversarial Networks (GANs) 

• Limitations of Maximizing Likelihood

• Adversarial Learning

• Wasserstein Loss and WGAN

References: 1803.08823, Deep Learning Book 
https://www.tensorflow.org/tutorials/generative/dcgan

https://www.tensorflow.org/tutorials/generative/dcgan


Generative Adversarial Networks (GANs) 

• Differential network, can be trained with backpropagation methods

• Idea: train two neural networks known as Generator G and 
Discriminator D that compete against each other.



Generative Adversarial Networks (GANs) 

• During training, G progressively becomes better at creating images 
that look real, while D becomes better at telling them apart. 

• The process reaches equilibrium (Nash equilibrium) when the 
discriminator can no longer distinguish real images from fakes.



GAN and VAE
• GANs and Variational Autoencoder (VAE) are generative models that do not 

directly seek to maximize likelihood.  

• Numerous applications, e.g., 

• Jet substructure in QCD: https://arxiv.org/abs/1808.08979; 

• Ising Model: https://arxiv.org/abs/1710.04987; 

• Many-body quantum systems: https://arxiv.org/abs/1710.00725; 

• Phase identification: https://arxiv.org/abs/1703.02435; 

• Galaxy images for dark energy science: https://arxiv.org/abs/1609.05796

• See a notebook on how to use GAN on MNIST dataset: https://
www.tensorflow.org/tutorials/generative/dcgan

https://arxiv.org/abs/1808.08979
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/dcgan


Real or Fake?

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/
karras2018iclr-paper.pdf

https://www.youtube.com/watch?v=XOxxPcy5Gr4



Limitations of Maximizing Likelihood
• KL divergence measures the similarity between two probability 

distributions; not a distance since : 

• A related quantity is the Jensen-Shannon divergence:

 which satisfies all the properties of a squared metric (see next page).

• Maximizing likelihood = minimizing KL divergence:

DKL(p | |q) ≠ DKL(q | |p)
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example, employ a novel cost function based on adversarial learning (a concept we motivate and explain below). Finally
we note that VAEs and GANs are already starting to make their way into physics (Heimel et al., 2018; Liu et al., 2017;
Rocchetto et al., 2018; Wetzel, 2017) and astronomy (Ravanbakhsh et al., 2017), and methods from physics may prove
useful for furthering our understanding of these methods (Alemi and Abbara, 2017). More generally, GANs have found
important applications in many artistic and image manipulation tasks (see references in (Goodfellow, 2016)).

The section is organized as follows. We start by motivating adversarial learning by discussing the limitations of
maximum likelihood based approaches. We then give a high-level introduction to the main idea behind generative
adversarial networks and discuss how they overcome some of these limitations, simultaneously highlighting both the
power of GANs and some of the difficulties. We then show how VAEs integrate the variational methods introduced
in Section 14 with deep, differentiable neural networks to build more powerful generative models that move beyond
the Expectation–Maximization (EM). We then briefly discuss VAEs from an information theoretic perspective, before
discussing practical tips for implementing and training VAEs. We conclude by using VAEs on examples using the Ising
and MNIST datasets (see also Notebooks 19 and 20).

17.1. The limitations of maximizing likelihood

The Kullback–Leibler (KL)-divergence plays a central role in many generative models. Developing an intuition about
KL-divergences is one of the keys to understanding why adversarial learning has proved to be such a powerful method
for generative modeling. Here, we revisit the KL-divergence with an eye towards understanding GANs and motivate
adversarial learning. The KL-divergence measures the similarity between two probability distributions p(x) and q(x).
Strictly speaking, the KL divergence is not a metric because it is not symmetric and does not satisfy the triangle inequality.

Given two distributions, there are two distinct KL-divergences we can construct:

DKL(p||q) =

Z
dxp(x) log

p(x)
q(x)

(214)

DKL(q k p) =

Z
dxq(x) log

q(x)
p(x)

. (215)

A related quantity called the Jensen–Shannon divergence,
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does satisfy all of the properties of a squared metric (i.e., the square root of the Jensen–Shannon divergence is a metric).
An important property of the KL-divergence that we will make use of repeatedly is its positivity: DKL(p k q) � 0 with
equality if and only if p(x) = q(x) almost everywhere.

In generative models in ML, the two distributions we are usually concerned with are the model distribution p✓ (x)
and the data distribution pdata(x). We of course would like these models to be as similar as possible. However, as we
discuss below, there are many subtleties about how we measure similarities that can have large consequences for the
behavior of training procedures. Maximizing the log-likelihood of the data under the model is the same as minimizing
the KL divergence between the data distribution and the model distribution DKL(pdata||p✓ ). To see this, we can rewrite the
KL divergence as:

DKL(pdata||p✓ ) =

Z
dxpdata(x) log pdata(x)

�

Z
dxpdata(x) log p✓ (x)

= �S[pdata] � hlog p✓ (x)idata (216)

Rearranging this equation, we have

hlog p✓ (v)idata = �S[pdata] � DKL(pdata||p✓ ) (217)

The equivalence follows from the positivity of KL-divergence and the fact that the entropy of the data distribution is
constant. In contrast, the original formulation of GANs minimizes an upper bound on the Jensen–Shannon divergence
between the model distribution p✓ (x) and the data distribution pdata(x) (Goodfellow et al., 2014).

This difference in objectives underlies the difference in behavior between GANs and likelihood based generative
models. To see this, we can compare the behavior of the two KL-divergences DKL(pdata||p✓ ) and DKL(p✓ ||pdata). As is evident
from Figs. 69 and 70, though both of these KL-divergences measure similarities between the two distributions, they are
sensitive to very different things. DKL(p✓ ||pdata) is insensitive to setting p✓ ⇡ 0 even when pdata 6= 0 whereas DKL(pdata||p✓ )
punishes this harshly. In contrast, DKL(pdata||p✓ ) is insensitive to placing weight in the model distribution in regions where
pdata ⇡ 0 whereas DKL(p✓ ||pdata) punishes this harshly. In other words, DKL(pdata||p✓ ) prefers models that have a high
probability in regions with lots of training data points whereas DKL(p✓ ||pdata) punishes models for putting high probability
where there is no data.
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Limitations of Maximizing Likelihood

• The equivalence follows from  and  is -independent:

• The original formulation of GANs minimizes the Jensen-Shannon 
divergence (but other measures e.g. Wasserstein distance are used).

•  and  measure similarities between the two 
distributions, but they are sensitive to very different things. 

•  is insensitive to setting  even when  
while  punishes this harshly.

• Likelihood-based methods may fail by improperly “filling in” low 
probability density regions between peaks in the data distribution. 
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Strictly speaking, the KL divergence is not a metric because it is not symmetric and does not satisfy the triangle inequality.

Given two distributions, there are two distinct KL-divergences we can construct:

DKL(p||q) =

Z
dxp(x) log

p(x)
q(x)

(214)

DKL(q k p) =

Z
dxq(x) log

q(x)
p(x)

. (215)

A related quantity called the Jensen–Shannon divergence,

DJS(p, q) =
1
2


DKL

✓
p
����
p + q
2

◆
+ DKL

✓
q
����
p + q
2

◆�

does satisfy all of the properties of a squared metric (i.e., the square root of the Jensen–Shannon divergence is a metric).
An important property of the KL-divergence that we will make use of repeatedly is its positivity: DKL(p k q) � 0 with
equality if and only if p(x) = q(x) almost everywhere.

In generative models in ML, the two distributions we are usually concerned with are the model distribution p✓ (x)
and the data distribution pdata(x). We of course would like these models to be as similar as possible. However, as we
discuss below, there are many subtleties about how we measure similarities that can have large consequences for the
behavior of training procedures. Maximizing the log-likelihood of the data under the model is the same as minimizing
the KL divergence between the data distribution and the model distribution DKL(pdata||p✓ ). To see this, we can rewrite the
KL divergence as:

DKL(pdata||p✓ ) =

Z
dxpdata(x) log pdata(x)

�

Z
dxpdata(x) log p✓ (x)

= �S[pdata] � hlog p✓ (x)idata (216)

Rearranging this equation, we have

hlog p✓ (v)idata = �S[pdata] � DKL(pdata||p✓ ) (217)

The equivalence follows from the positivity of KL-divergence and the fact that the entropy of the data distribution is
constant. In contrast, the original formulation of GANs minimizes an upper bound on the Jensen–Shannon divergence
between the model distribution p✓ (x) and the data distribution pdata(x) (Goodfellow et al., 2014).

This difference in objectives underlies the difference in behavior between GANs and likelihood based generative
models. To see this, we can compare the behavior of the two KL-divergences DKL(pdata||p✓ ) and DKL(p✓ ||pdata). As is evident
from Figs. 69 and 70, though both of these KL-divergences measure similarities between the two distributions, they are
sensitive to very different things. DKL(p✓ ||pdata) is insensitive to setting p✓ ⇡ 0 even when pdata 6= 0 whereas DKL(pdata||p✓ )
punishes this harshly. In contrast, DKL(pdata||p✓ ) is insensitive to placing weight in the model distribution in regions where
pdata ⇡ 0 whereas DKL(p✓ ||pdata) punishes this harshly. In other words, DKL(pdata||p✓ ) prefers models that have a high
probability in regions with lots of training data points whereas DKL(p✓ ||pdata) punishes models for putting high probability
where there is no data.



Limitations of Maximizing Likelihood

• The Jensen–Shannon divergence which 
underlies GANs is sensitive both to 
placing weight where there is data since 
it has information about   
and to not placing weight where no data 
has been observed since it has 
information about . 

• Adversarial learning: teaches a 
discriminator network to distinguish 
between real data points and samples 
generated from the model. By punishing 
the model for generating points that can 
be easily discriminated from the data, 
adversarial learning decreases the 
weight of regions in the model space 
that are far away from data points.

DKL(pdata | |pθ)

DKL(pθ | |pdata)
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Fig. 69. KL-divergences between the data distribution pdata and the model p✓ . Data is drawn from a bimodal Gaussian distribution with unit variances
peaked at ±� with � = 2.0 and the model p✓ (x) is a Gaussian with mean zero and same variance as p✓ (x). (Top) pdata and p✓ for � = 2. (Bottom)
DKL(pdata||p✓ ) (Data-Model) and DKL(p✓ ||pdata) (Model-Data) as a function of �. Notice that DKL(pdata||p✓ ) is insensitive to placing weight in the model
distribution in regions where pdata ⇡ 0 whereas DKL(p✓ ||pdata) punishes this harshly.

In the context of the above discussion, this suggests that the way likelihood-based methods are most likely to fail,
is by improperly ‘‘filling in’’ any low-probability density regions between peaks in the data distribution. In contrast, at
least in principle, the Jensen–Shannon distribution which underlies GANs is sensitive both to placing weight where there
is data since it has information about DKL(pdata||p✓ ) and to not placing weight where no data has been observed (i.e. in
low-probability density regions) since it has information about DKL(p✓ ||pdata).

In practice, DKL(pdata||p✓ ) can be calculated easily directly from the data using sampling. On the other hand, DKL(p✓ ||pdata)
is impossible to compute since we do not know pdata(x). In particular, this integral cannot be calculated using sampling
since we cannot evaluate pdata(x) at the locations of the fantasy particles. The idea of adversarial learning is to
circumnavigate this difficulty by using an adversarial learning procedure. Recall, that DKL(p✓ ||pdata) is large when the
model artificially over-weighs low-density regions near real peaks (see Fig. 69). Adversarial learning accomplishes this
same task by teaching a discriminator network to distinguish between real data points and samples generated from the
model. By punishing the model for generating points that can be easily discriminated from the data, adversarial learning
decreases the weight of regions in the model space that are far away from data points — regions that inevitably arise
when maximizing likelihood. This core intuition implicitly underlies many adversarial training algorithms (though it has
been recently suggested that this may not be the entire story (Goodfellow, 2016)).

17.2. Generative models and adversarial learning

Here, we give a brief high-level overview of the basic idea behind GANs. The mathematics and theory of GANs draws
deeply from concepts in Game Theory such as Nash Equilibrium that are foreign to most physicists. For this reason, a
comprehensive discussion of GANs is beyond the scope of the review. Readers interested in learning more are directed to
the comprehensive tutorial by Goodfellow (Goodfellow, 2016). GANs are also notorious for being hard to train. For this
reason, readers wishing to play with GANs should also consider the very nice practical discussion entitled ‘‘How to train
a GAN’’ (affectionately labeled ‘‘ganhacks’’) available at https://github.com/soumith/ganhacks.

The central idea of GANs is to construct two differentiable neural networks (see Fig. 71). The first neural network,
usually a (de)convolutional network based on the DCGAN architecture (Radford et al., 2015), approximates a generator
function G(z; ✓G) that takes as input a z sampled from some prior on the latent space, and outputs a x from the model.
The second network approximates a discriminator function D(x; ✓D) that is designed to distinguish between x from the
data and samples generated by the model: x = G(z; ✓G). The scalar D(x) represents the probability that x came from the



Adversarial Learning
• The theory of GANs draws deeply from concepts in Game Theory 

such as Nash Equilibrium.

• Hard to train, see e.g. tutorial: https://github.com/soumith/ganhacks

• Two differential network:
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Fig. 71. A GAN consists of two differentiable functions (usually represented as deep neural networks): a generator function G(z; ✓G) that takes as
an input a z sampled from some prior on the latent space and outputs a point x. The generator function (neural network) has parameters ✓G . The
discriminator function D(x; ✓D) discriminates between x from the data and samples from the model: x = G(z; ✓G). The two networks are trained by
‘‘playing a game’’ where the discriminator is trained to distinguish between synthetic and real examples while the generator is trained to try to fool
the discriminator. Importantly, the cost function for the discriminator depends on the generator parameters and vice versa.

It turns out that this cost function is related to the Jensen–Shannon Divergence in a simple manner (Goodfellow, 2016;
Goodfellow et al., 2014):

C(G) = � log 4 + 2DJS(pdata, p✓G ). (220)

This brings us back full circle to the discussion in the last section on KL-divergences.

17.3. Variational Autoencoders (VAEs)

We now turn our attention to another class of powerful latent-variable, generative models called Variational Autoen-
coders (VAEs). VAEs exploit the variational/mean-field theory ideas presented in Section 14 to build complex generative
models using deep neural networks (DNNs). The central idea behind VAEs is to represent the map from latent variables
to observable variables using a DNN. The use of latent variables is a common theme in many of the generative models we
have encountered in unsupervised learning tasks from Gaussian Mixture Models (see Section 13) to Restricted Boltzmann
Machines. However, in VAEs this mapping, p(x|z, ✓ ) is much less restrictive and much more complicated since it takes
the form of a DNN. This added complexity means we cannot use techniques such as Expectation–Maximization to train
the model and instead must rely of methods based on backpropagation.

17.3.1. VAEs as variational models
We start by discussing VAEs from a variational perspective. We will make extensive use of the concepts introduced

in Section 14 and the reader is strongly-encouraged to refresh their memory of this section before proceeding. A VAE
is a latent-variable model p✓ (x, z) with a latent variables z and observed variables x. The latent variables are drawn
from some pre-specified prior distribution p(z). In practice, p(z) is almost always taken to be a multivariate Gaussian.
The conditional distribution p✓ (x|z) maps points in the latent space to new examples (see Fig. 72). This is often called a
‘‘stochastic decoder’’ and defines the generative model for the data. The reverse mapping that gives the posterior over the
latent variables p✓ (z|x) is often called the ‘‘stochastic encoder’’.

A central challenge in latent variable modeling is to infer the posterior distribution of the latent variables given a
sample from the data. This can in principle be done via Bayes’ rule: p✓ (z|x) =

p(z)p✓ (x|z)
p✓ (x)

. For some models, we can calculate
this analytically. In this case, we can use techniques like Expectation–Maximization (EM) (see Section 14). However, in
general this is intractable since the denominator requires computing a sum over all configurations of the latent variables,
p✓ (x) =

R
p✓ (x, z)dz =

R
p✓ (x|z)p(z)dz (i.e. a partition function in the language of physics), which is often intractable for

large models. In VAEs, where the p✓ (x|z) is modeled using a DNN, this is impossible.

D=0 fake
D=1 real



Adversarial Learning: Cost Function
• To define the cost functions, first introduce the following functional: 

• The first term is the log probability of  predicting that real data is 
indeed real, while the second term is the log probability of  
predicting that the generator’s data  is indeed generated.

• The cost functions for the discriminator and generator are:

• Training: alternate between generator and discriminator (keep 
weights of the other network fixed during training).

D
D

D(G(z))
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Fig. 70. KL-divergences between the data distribution pdata and the model p✓ . Data is drawn from a Gaussian mixture of the form pdata =

0.25N (��) + 0.25 ⇤ N (�) + 0.5N (0) where N (a) is a normal distribution with unit variance centered at x = a. p✓ (x) is a Gaussian with � 2 = 2.
(Top) pdata and p✓ for � = 5. (Middle) pdata and p✓ for � = 1. (Bottom) DKL(pdata||p✓ ) [Data-Model] and DKL(p✓ ||pdata) [Model-Data] as a function of
�. Notice that DKL(p✓ ||pdata) is insensitive to placing weight in the model distribution in regions where p✓ ⇡ 0 whereas DKL(pdata||p✓ ) punishes this
harshly.

data rather than the model p✓G . We train D to distinguish actual data points from synthetic examples and the generative
network to fool the discriminative network.

To define the cost function for training, it is useful to define the functional

V (D,G) = Ex⇠pdata (logD(x))
+ Ez⇠pprior (log [1 � D(G(z))]) . (218)

In the version of GANs most amenable to theoretical analysis – though not the version usually implemented in practice –
we take the cost function for the discriminator and generators to be C(G) = �C(D) =

1
2V (D,G). This choice of cost functions

corresponds to what is called a zero-sum game. Since the discriminator is maximized, we can write a cost function for
the generator as

C(G) = max
D

V (G,D). (219)

CD = V(D, G) = − CG
generator designed to 

do the opposite



Adversarial Learning: Cost Function

• In terms of the real and generated distributions  and :

• What is the optimal D for fixed generator? 

• Extremizing   gives .

• After successful training,  and so . As a result

ρr(x) ρg(x)

f(y) = a log y + b log(1 − y) y = a/(a + b)
ρr = ρg y = 1/2

V(D, G) = 𝔼x∼pdata
log(D(x)) + 𝔼z∼pprior

log[1 − D(G(z))]

= ∫ dx ρr(x) log(D(x)) + ∫ dz ρprior(z) log[1 − D(G(z))]

= ∫ dx ρr(x) log(D(x)) + ∫ dx ρg(x) log[1 − D(x)]

V(D, G) = log ( 1
2 ) [∫ dxρr(x) + ∫ dxρg(x)] = − 2 log 2



Adversarial Learning: Cost Function

• What does the loss function represent (in this idealized setting)?

• In this limit, loss of GAN quantifies similarity between generator data 
distribution  & real data distribution  by evaluating JS divergence.ρg ρr

DJS(ρr | |ρg) =
1
2

DKL(ρr | |
ρr + ρg

2
) +

1
2

DKL(ρg | |
ρr + ρg

2
)

=
1
2 (log 2 + ∫ dxρr log

ρr

ρr + ρg ) +
1
2 (log 2 + ∫ dxρg log

ρg

ρr + ρg )
=

1
2 (log 4 + V(D, G))

→ 0 for ideaized training



GANs: Training

• Alternating training of generator and discriminator. 

• Intuition: discriminator and generator get better at the same speed, 
the results of the generator get more accurate and the discriminator 
stronger to distinguish real from fake samples. 

• Keep generator (respectively discriminator) constant during training of 
the respective other network. 

• Perfect success of generator: 50% success rate in discriminator 
(discriminator only guessing). 

• Problem: discriminator feedback less useful and generator might not 
improve anymore (or even collapse).



GANs: Problems
• Vanishing gradients: discriminator or generator too good. Modify loss to 

train one network faster than the other, vary strength of respective 
networks. 

• Mode collapse: generator provides always the same output which might 
be a perfect example. Generator finds a way to trick the discriminator. 
Modify loss to make it harder for generator to trick discriminator (unrolled 
GANs) 

• No convergence to Nash equilibrium (zero sum game) guaranteed: 
.

• Intrinsically no proper evaluation metric. When is performance good? 

f(x, y) = xy



Wasserstein Loss
• Different measure to quantify the difference between data and model 

distribution: earth-mover distance (Wasserstein distance). 

• Idea: Earth-mover distance = Minimum energy cost to transform a 
pile of dirt from one shape to another. Cost = Amount x Distance.

• Consider an example where the probability domain is discrete.

Cost to make  and 
match 

Pi Qi
≡ δi



Wasserstein Loss
• When dealing with the continuous probability domain, the distance 

formula becomes:

•  is the set of all possible joint probability distributions between 
 and , and when marginalized over  and  gives:

• Each  describes one dirt transport plan: = 
percentage of dirt should be transported from point  to point  so as 
to make  follows the same probability distribution of .

• Cost = amount x distance = . Expected cost averaged 
across all the  pairs:

π(pr, pg)
ρr ρg x y

γ ∈ Π(pr, pg) γ(x, y)
x y

x y
γ(x, y) | |x − y | |

(x, y)



WGAN

• Even when two distributions are located in lower dimensional 
manifolds without overlaps, Wasserstein distance can still provide a 
meaningful and smooth representation of the distance in-between.

• Consider the following two distributions P and Q:



WGAN
• There is no overlap between  and  when :

• When , the two distributions are fully overlapped:

•  gives us infinity when two distributions are disjoint. The value of  
has sudden jump, not differentiable at . Only Wasserstein metric 
provides a smooth measure, which is helpful for a stable learning process 
using gradient descents.

P Q θ ≠ 0

θ = 0

DKL DJS
θ = 0



Summary

• Generative Adversarial Networks (GANs) 

• Limitations of Maximizing Likelihood

• Adversarial Learning

• Wasserstein Loss and WGAN


