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Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 16: Generative Adversarial Networks



Recap of Lecture 15

e Autoencoder
e Variational methods and Mean Field Theory (MFT)

* Expectation-Maximization (EM)



Outline for today

 Generative Adversarial Networks (GANS)
e Limitations of Maximizing Likelihood
e Adversarial Learning

e Wasserstein Loss and WGAN

References: 1803.08823, Deep Learning Book
https://www.tensorflow.org/tutorials/generative/dcgan



https://www.tensorflow.org/tutorials/generative/dcgan

Generative Adversarial Networks (GANS)

e Differential network, can be trained with backpropagation methods

e |dea: train two neural networks known as Generator G and
Discriminator D that compete against each other.
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Generative Adversarial Networks (GANS)

* During training, G progressively becomes better at creating images
that look real, while D becomes better at telling them apart.

 The process reaches equilibrium (Nash equilibrium) when the
discriminator can no longer distinguish real images from fakes.
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GAN and VAE

 GANs and Variational Autoencoder (VAE) are generative models that do not
directly seek to maximize likelihood.

* Numerous applications, e.g.,

e Jet substructure in QCD: https://arxiv.org/abs/1808.08979;

* Ising Model: https://arxiv.org/abs/1710.04987;

 Many-body quantum systems: https://arxiv.org/abs/1710.00725;

* Phase identification: https://arxiv.org/abs/1703.02435;

* Galaxy images for dark energy science: https://arxiv.org/abs/1609.05796

* See a notebook on how to use GAN on MNIST dataset: https://
www.tensorflow.org/tutorials/generative/dcgan



https://arxiv.org/abs/1808.08979
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/dcgan

Real or Fake?

Figure 10: Top: Our CELEBA-HQ results. Bottom: The nearest neighbors found from the training
data. using the center crop (half vertically, half horizontally) and L distance in pixel space.

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/
karras2018iclr-paper.pdf

https://www.youtube.com/watch?v=XOxxPcy5Gr4



Limitations of Maximizing Likelihood

e KL divergence measures the similarity between two probability
distributions; not a distance since Dy;(p||q) # Dx;(q || p):

Da(pllg) = f dxp(x) log 2%
q(x)

Dalq || p) = / dxq(x)log 1.
p(x)

e Arelated quantity is the Jensen-Shannon divergence:

Dis(p, q) = ; |:DKL( Herq) + KL( H )]

which satisfies all the properties of a squared metric (see next page).

 Maximizing likelihood = minimizing KL divergence:

Dx1(Pdatal Do) = /dxpdata(x) 108 Paata(X) — /dedata(x) logpe(X) = —S[Pdatal — <logp0(x)>data
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Limitations of Maximizing Likelihood

The equivalence follows from Dy, > 0 and S[p,...] IS 6-independent:
(lOgPQ(V»data — _S[pclata] — DKL(pdataHpG)

The original formulation of GANs minimizes the Jensen-Shannon
divergence (but other measures e.g. Wasserstein distance are used).

Di; (Paata | | P9) @Nd Dy (pyl | paac) Measure similarities between the two
distributions, but they are sensitive to very different things.

Dy (Py| | Paara) 18 iNseNSItive to setting py ~ 0 even when p4... # 0
while Dy, (py.a | | Po) PUNishes this harshly.

Likelihood-based methods may fail by improperly “filling in” low
probability density regions between peaks in the data distribution.



Limitations of Maximizing Likelihood
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Adversarial Learning

 The theory of GANs draws deeply from concepts in Game Theory
such as Nash Equilibrium.

 Hard to train, see e.qg. tutorial: https://github.com/soumith/ganhacks

e Two differential network:

D(x) tries to make —
D(G(z))be near 0 D=0 fake
G tries to make D=1 real
D(G(z))be near 1
D(x) triesto T
be near 1 D
“Discriminator” x sampled from
network D data
T “Generator”
x sampled from network G
data ‘T

latent space
input z




Adversarial Learning: Cost Function

To define the cost functions, first introduce the following functional:

V(D, G) = Ex-pyy, (I0g D(X))
+ Egpyor (l0g[1— D(G(2))])

The first term is the log probability of D predicting that real data is
indeed real, while the second term is the log probability of D
predicting that the generator’s data D(G(z)) is indeed generated.

The cost functions for the discriminator and generator are:

— V(D — _ generator designed to
Cp = VD, G) Cq do the opposite

Training: alternate between generator and discriminator (keep
weights of the other network fixed during training).



Adversarial Learning: Cost Function

o Interms of the real and generated distributions p (x) and pg(x):

V(D,G) = E,.,, log(D®) +E,., logll — D(G(2))]

~Pq

— [ 9,0 108D + [ dz pyn(@) 108l = DG

— de p.(x) log(D(x)) + [dx p(x) log[l — D(x)]

 What is the optimal D for fixed generator?
o Extremizing f(y) = alogy + blog(1l —y) givesy = a/(a + b).

« After successful training, p, = p, and soy = 1/2. As a result

V(D, G) = log <%> ”dxpr(x) + depg(x)] = —2log?2



Adversarial Learning: Cost Function

 What does the loss function represent (in this idealized setting)?

pr+pg 1 pr+pg

+—=D
> ) > KL(Pg” >

1
D;s(p, |1 py) = =Dk (o, )

2

1 Py 1 'Og
=—| log2 + |dxp,log +—| log2 + [dxp,log
2 pr+ P, 2 Pr+ Pg

1
=2 (log4 + V(D,G))

— 0 for 1deaized training

* In this limit, loss of GAN quantifies similarity between generator data
distribution p, & real data distribution p,. by evaluating JS divergence.



GANSs: Training

Alternating training of generator and discriminator.

Intuition: discriminator and generator get better at the same speed,
the results of the generator get more accurate and the discriminator
stronger to distinguish real from fake samples.

Keep generator (respectively discriminator) constant during training of
the respective other network.

Perfect success of generator: 50% success rate in discriminator
(discriminator only guessing).

Problem: discriminator feedback less useful and generator might not
improve anymore (or even collapse).



GANSs: Problems

 Vanishing gradients: discriminator or generator too good. Modify loss to
train one network faster than the other, vary strength of respective
networks.

* Mode collapse: generator provides always the same output which might
be a perfect example. Generator finds a way to trick the discriminator.

Modify loss to make it harder for generator to trick discriminator (unrolled
GANS)

* No convergence to Nash equilibrium (zero sum game) guaranteed:
Jx,y) = xy.

0 20 40 60 80 100

* Intrinsically no proper evaluation metric. When is performance good?



Wasserstein Loss

e Different measure to quantify the difference between data and model
distribution: earth-mover distance (Wasserstein distance).

e |dea: Earth-mover distance = Minimum energy cost to transform a
pile of dirt from one shape to another. Cost = Amount x Distance.

e Consider an example where the probability domain is discrete.
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Wasserstein Loss

When dealing with the continuous probability domain, the distance
formula becomes:

W(pra pg) — inf ) lE(x,y)Ny[”x - y”]

y~1@,.p,

=(p,,p,) IS the set of all possible joint probability distributions between
p, and p,, and when marginalized over x and y gives:

2. 75 Y) = pg(y) 2, 7%, y) = py(x).

Each y € Il(p,. p,) describes one dirt transport plan: y(x, y)=

percentage of dirt should be transported from point x to point y so as
to make x follows the same probability distribution of y.

Cost = amount x distance = y(x,y)||x — y||. EXpected cost averaged
across all the (x, y) pairs:

Yy Ylx = yll = Evyey llx = yll

X,y



WGAN

 Even when two distributions are located in lower dimensional
manifolds without overlaps, Wasserstein distance can still provide a
meaningful and smooth representation of the distance in-between.

e Consider the following two distributions P and Q:

1.0 A
0.8 -

0.6 A
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WGAN

e There is no overlap between P and O when 8 # O:

1
Du(PQ)= ), 1-logj =+oo
x=0,y~U(0,1)

1
D (QIP)= ), 1-log— = +oo

0
x=0,y~U(0,1)

1 1 1
DisP.Q)=( 2, l-log—+ 3 1:-log—)=log2
x=0,y~U(0,1) x=0,y~U(0,1)

W(P, Q) = |6
e When @ = 0, the two distributions are fully overlapped:

D (P||Q) = Dk (Q||P) = Dys(P,0) =0
WP, Q) =0= |0

o Dy, gives us infinity when two distributions are disjoint. The value of D
has sudden jump, not differentiable at @ = 0. Only Wasserstein metric

provides a smooth measure, which is helpful for a stable learning process
using gradient descents.



Summary

Generative Adversarial Networks (GANS)
Limitations of Maximizing Likelihood
Adversarial Learning

Wasserstein Loss and WGAN



