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Lecture 17: Variational Autoencoder



Recap of Lecture 16

• Generative Adversarial Networks (GANs) 

• Limitations of Maximizing Likelihood

• Adversarial Learning

• Wasserstein Loss and WGAN



Outline for today

• Variational Autoencoder (VAE)

• Neural Net Perspective

• Probability Model Perspective

• Connecting the two perspectives

• Reparametrization trick

References: 1803.08823, Deep Learning Book 
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1312.6114

https://arxiv.org/abs/1606.05908


VAE: Neural Net Perspective
• In neural net language, a variational autoencoder consists of an 

encoder, a decoder, and a loss function.

• The latent (hidden) space  has a much smaller dimension than the 
data space  (hence the name “bottleneck”).
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VAE: Neural Net Perspective

• The encoder is a neural net with weights  and the decoder is 
another neural net with weights .

• As an example, consider a 28 by 28-pixel black and white photo of a 
handwritten number.  = 784 dimensional vector with 0 or 1 entries.

• The decoder ‘decodes’ the real-valued numbers in latent space  into 
real-valued numbers between 0 and 1 (Bernoulli distribution).

• Information cannot be fully transmitted. How much information is lost? 

• Reconstruction log-likelihood  measures how effectively the 
decoder has learned to reconstruct an input image  given its latent 
representation . 
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VAE: Neural Net Perspective

• The loss function of the variational autoencoder is the negative log-
likelihood with a regularizer. 

• Because there are no global representations that are shared by all 
datapoints, we can decompose the loss function into only terms that 
depend on a single datapoint . The total loss is the sum of :

• The first term is the reconstruction loss, with expectation taken with 
respect to the encoder’s distribution over the representations. This 
term encourages the decoder to learn to reconstruct the data.

• The second term is a regularizer (derived later). The KL divergence 
measures how much information is lost when using  to represent .
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VAE: Neural Net Perspective

• In the variational autoencoder,  is specified as a standard Normal 
distribution with mean zero and variance one, or .

• The regularizer means ‘keep the representation  sufficiently diverse’. 
Without the regularizer, the encoder could learn to cheat & give each 
datapoint a representation in a different region of Euclidean space. 

• Otherwise, two images of the same number (say a 2 written by  
and ) could end up with different representations  and .

• The regularizer has the effect of keeping similar numbers’ 
representations close together.

• We train the variational autoencoder using gradient descent to optimize 
the loss with respect to the parameters of the encoder & decoder  & .
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VAE: Probability Model Perspective

• In the probability model framework, a variational autoencoder 
contains a specific probability model of data  and latent variables .

• The joint probability of the model:

• The decoder can be graphically represented as follows:

x z

For each datapoint :

• Draw latent variables 

• Draw datapoint 

i
zi ∼ p(z)

xi ∼ p(x |z)



VAE: Probability Model Perspective
• The latent variables are drawn from a prior . The data  have a 

likelihood  that is conditioned on latent variables .

• The model defines a joint probability distribution :

• The goal is to infer good values of the latent variables given observed 
data, or to calculate the posterior . Using Bayes’ theorem:

•  is called the evidence, and we can calculate it by marginalizing 
out the latent variables: .

• Unfortunately, this integral requires exponential time to compute as it 
needs to be evaluated over all configurations of latent variables. 
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VAE: Probability Model Perspective

• Variational inference approximates the posterior with a family of 
distributions .

• The variational parameter λ indexes the family of distributions. For 
example, if q were Gaussian, it would be the mean and variance of 
the latent variables for each datapoint .

• We can use the KL divergence to measure how well our variational 
posterior  approximates the true posterior .

• Our goal is to find the variational parameters λ that minimize this 
divergence. The optimal approximate posterior is thus
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VAE: Probability Model Perspective

• This is impossible to compute directly because the pesky evidence 
 (which is intractable) appears in the divergence.

• Introduce a new function:

• We can combine this with the KL divergence & rewrite the evidence:

• Since the KL divergence is positive semi-definite, minimizing the KL 
divergence is equivalent to maximizing the ELBO.

• ELBO = Evidence Lower BOund allows us to do approximate 
posterior inference in a computationally tractable way.
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VAE: Probability Model Perspective

• In the VAE model, there are only local latent variables (no datapoint 
shares its latent  with the latent variable of another datapoint).

• We can decompose the ELBO into a sum where each term depends 
on a single datapoint. This allows us to use stochastic gradient 
descent with respect to the parameters λ (which are shared).

• The ELBO for a single datapoint in the VAE is

• To see that this is equivalent to our previous definition of the ELBO, 
expand the log joint into the prior and likelihood terms and use the 
product rule for the logarithm.
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Connecting the two perspectives
• To make the connection to NN language, parametrize the approximate 

posterior  with an inference network (encoder).

• We parametrize the likelihood  with a generative network (or 
decoder) that takes latent variables and outputs parameters to the data 
distribution .

• We optimize the model parameters to maximize the ELBO using SGD:

• This evidence lower bound is the negative of the loss function for VAE 
we discussed from the NN perspective, .

• The probability model approach makes clear why the “reconstruction 
cost” and “regularizer” terms exist: to minimize the KL divergence 
between the approximate posterior  and model posterior . 
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Connecting the two perspectives
• What about the model parameters?

• The term ‘variational inference’ usually refers to maximizing the ELBO 
with respect to the variational parameters λ.

• We can also maximize the ELBO with respect to the model 
parameters ϕ (e.g. the weights and biases of the generative NN 
parameterizing the likelihood). This technique is called variational EM 
(expectation maximization) discussed earlier.

• The recipe for variational inference involves defining:

• a probability model  of latent variables and data

• a variational family  for the latent variables to approximate our 
posterior

• Then we used the variational inference algorithm to learn the 
variational parameters (gradient ascent on the ELBO to learn λ).
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Reparametrization Trick

• Maximizing ELBO w.r.t. λ is tricky because it appears in both terms:

• Use backpropagation to calculate the gradient of the first term? 

• Change of variables (reparametrization trick [Kingma and Welling, 13]).

• Idea: express the random variable  as some differentiable 
and invertible transformation of random variable :

 where the distribution of  is independent of  and . We can replace:

z ∼ qθ(z |x)
ϵ

ϵ x θ

108 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 73. Schematic explaining the computational flow of VAEs. Figure based on Kingma’s Ph.D. dissertation Chapter 2. (Kingma et al., 2017).

Taking the gradient with respect to ✓ is easy since only the first term in Eq. (223) depends on ✓ ,

C✓ ,�(x) = Eq� (z|x)[r✓ log p✓ (x, z)]

⇠ r✓ log p✓ (x, z) (225)

where in the second line we have replaced the expectation value with a single Monte-Carlo sample z drawn from q�(z|x)
(see Fig. 73). When p✓ (x|z) is approximated by a neural network, this can be calculated using backpropagation with the
reconstruction error as the objective function.

On the other hand, calculating the gradient with respect to the parameters � is more complicated since � also appears
in the expectation value Eq� (z|x). Ideally, we would like to also use backpropagation to calculate this as well. It turns out
that this can be done by a simple change of variables that often goes under the name the ‘‘reparametrization trick’’ (Kingma
and Welling, 2013; Rezende et al., 2014). The basic idea is to change variables so that � no longer appears in the
distribution we are taking an expectation value with respect to. To do this, we express the random variable z ⇠ q�(z|x)
as some differentiable and invertible transformation of another random variable ✏:

z = g(✏, �, x), (226)

where the distribution of ✏ is independent of x and �. Then, we can replace expectation values over q�(z|x) by expectation
values over p✏

Eq� (z|x)[f (z)] = Ep✏ [f (z)]. (227)

Evaluating the derivative then becomes quite straight forward since

r�Eq� (z|x)[f (z)] ⇠ Ep✏ [r� f (z)]. (228)

Of course, when we do this we still need to be able to calculate the Jacobian of this change of variables

d�(x, �) = Det
����
@z
@✏

���� (229)

since

log q�(z|x) = log p(✏) � log d�(x, �). (230)

Since we can calculate gradients, we can now use backpropagation on the full the ELBO objective function (we return to
this below when we discuss concrete architectures and implementations of VAE).

One of the problems that commonly occurs when training VAEs by performing a stochastic optimization of the ELBO
(variational free energy) is that it often gets stuck in undesirable local minima, especially at the beginning of the training
procedure (Bowman et al., 2015; Kingma et al., 2017; Sønderby et al., 2016). The underlying reason for this is that the
ELBO objective function can be improved in two qualitatively different ways corresponding to each of the two terms
in Eq. (223): by minimizing the reconstruction error or by making the posterior distribution q�(z|x) to be close to p(z)
(Of course, the goal is to do both!). For complex datasets, at the beginning of training when the reconstruction error is
extremely poor, the model often quickly learns to make q(z|x) ⇡ p(z) and gets stuck in this local minimum. For this
reason, in practice it is found that it makes sense to modify the ELBO objective to use an optimization schedule of the
form

Eq� (z|x)[log p✓ (x, z)] � �DKL(q�(z|x)|p(z)) (231)
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One of the problems that commonly occurs when training VAEs by performing a stochastic optimization of the ELBO
(variational free energy) is that it often gets stuck in undesirable local minima, especially at the beginning of the training
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Reparametrization Trick

• Evaluating the derivative of the expectation becomes straightforward: 

• The Jacobian of this change of variables:

• The distributions are related by:

• We can now use backpropagation on the full ELBO objective function.
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Reparametrization Trick

Diamonds indicate deterministic dependencies, 
circles indicate random variables.



Training VAE
• A common problem in training VAEs by stochastic optimization of the 

ELBO is that it often gets stuck in undesirable local minima.

• The reason is that the ELBO can be improved in two qualitatively different 
ways: by minimizing the reconstruction error or by making the posterior 
distribution  to be close to .

• For complex dataset, at the beginning of training when the reconstruction 
is extremely poor, the model quickly learns to make  and 
gets stuck in this local minimum.

• Modify the ELBO objective:

with  slowly annealed from 0 to 1 ([Bowman et al, 15]; [Sonderby et al, 16]). 
An alternative regularization is the “method of free bits” [Kingma et al, 17].

qθ(z |x) p(z)

q(z |x) ≈ p(z)

β

𝔼qθ(z|x)[log pϕ(x, z)] − βDKL (qθ(z |x) | |p(z))



Training VAE for Ising ModelsP. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 113

Fig. 77. (Top) Embedding of the Ising dataset into a two-dimensional latent space using a VAE with two latent dimensions (see Notebook 20 and
main text for details.) Data points are colored by the temperature each sample was drawn at. (Bottom) Correlation between the latent dimensions
and the magnetization for each sample. Notice that the first principle component corresponds to the magnetization.

Fig. 78. Fantasy particles for the Ising model generated by uniform sampling of probability p(z) mapped to latent space using the inverse Cumulative
Distribution Function (CDF) of the Gaussian.

two somewhat disparate tasks. First, we have tried to highlight more abstract and theoretical considerations to show
the unity of ML and statistical learning. Many ML techniques can be understood by starting with some key concepts

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB20_CXVII-Keras_VAE_ising.html



Summary

• Variational Autoencoder (VAE)

• Neural Net Perspective

• Probability Model Perspective

• Connecting the two perspectives

• Reparametrization trick


