PHY 835: Collider Physics Phenomenology

Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 18: Topological Data Analysis

References

- A. Cole and G. Shiu, ``Persistent Homology and Non-Gaussianity," JCAP 03, 025 (2018); https://arxiv.org/pdf/1712.08159.pdf
- A. Cole and G. Shiu, ``Topological Data Analysis for the String Landscape," JHEP 03, 054 (2019); <u>https://arxiv.org/pdf/1812.06960.pdf</u>
- A. Cole, A. Schachner and G. Shiu, ``Searching the Landscape of Flux Vacua with Genetic Algorithms," JHEP 11, 045 (2019); <u>https://arxiv.org/pdf/</u> <u>1907.10072.pdf</u>
- M. Biagetti, A. Cole and G. Shiu, ``The Persistence of Large Scale Structures I: Primordial non-Gaussianity," https://arxiv.org/pdf/ 2009.04819.pdf
- A. Cole, G.J. Loges and G. Shiu, ``Quantitative and Interpretable Order Parameters for Phase Transitions from Persistent Homology," https:// arxiv.org/pdf/2009.14231.pdf

Data is BIG

Cosmology is marching into a big data era:

Experimental Data	2013	2020	2030+
Storage	1PB	6PB	100-1500PB
Cores	10^{3}	70K	300+K
CPU hours	$3 \mathrm{x} 10^6 \mathrm{hrs}$	2×10^8 hrs	$\sim 10^9 \text{ hrs}$
Simulations	2013	2020	2030+
Storage	1-10 PB	10-100PB	> 100PB - 1EB
Cores	0.1-1M	10-100M	> 1G
CPU hours	200M	>20G	$> 100 {\rm G}$

	data volume	schedule
SDSS	40 TB	2000-2020
DESI	2 PB	2019-2027
LSST	> 60 PB	2020-2030
Euclid	>10 PB	2020-2027
WFIRST	>2 PB	2023-2030
CMB-S4	Ø(1) (PB)	2020-2027(?)
SKA	4.6 EB	2019-2030(?)

Table taken from 1311.2841

Data is BIG

Cosmology is marching into a big data era:

Experimental Data	2013	2020	2030 +
Storage	1PB	6PB	100-1500PB
Cores	10^{3}	70K	300+K
CPU hours	$3 \mathrm{x} 10^6 \mathrm{hrs}$	2×10^8 hrs	$\sim 10^9 \text{ hrs}$
Simulations	2013	2020	2030 +
Storage	1-10 PB	10-100PB	> 100PB - 1EE
Cores	0.1 - 1M	10-100M	> 1G
CPU hours	200M	>20G	$> 100 {\rm G}$

	data volume	schedule
SDSS	40 TB	2000-2020
DESI	2 PB	2019-2027
LSST	> 60 PB	2020-2030
Euclid	>10 PB	2020-2027
WFIRST	>2 PB	2023-2030
CMB-S4	Ø(1) (PB)	2020-2027(?)
SKA	4.6 EB	2019-2030(?)

Table taken from 1311.2841

~ 200PB of *archived data* in the first 7 years of the LHC.

Data is BIG

Cosmology is marching into a big data era:

Experimental Data	2013	2020	2030 +
Storage	1PB	6PB	100-1500PB
Cores	10^{3}	70K	300+K
CPU hours	$3 \mathrm{x} 10^6 \mathrm{hrs}$	2×10^8 hrs	$\sim 10^9 \text{ hrs}$
Simulations	2013	2020	2030 +
Storage	1-10 PB	10-100PB	> 100PB - 1EE
Cores	0.1-1M	10-100M	> 1G
CPU hours	200M	>20G	$> 100 { m G}$

	data volume	schedule
SDSS	40 TB	2000-2020
DESI	2 PB	2019-2027
LSST	> 60 PB	2020-2030
Euclid	>10 PB	2020-2027
WFIRST	>2 PB	2023-2030
CMB-S4	Ø(1) (PB)	2020-2027(?)
SKA	4.6 EB	2019-2030(?)

Table taken from 1311.2841

~ 200PB of *archived data* in the first 7 years of the LHC.

In terms of sheer volume, **not**hing **trumps** the volume of **string theoretical data**. It has been estimated that the number of vacua:

 10^{500} (Type IIB flux vacua) $10^{272,000}$ (F theory flux vacua)

Dimensionality Reduction

- This data lives in high-dimensional phase space
 - N particles: dim $\sim N_{\text{particles}}$
 - Function on sphere: dim $\sim N_{\rm pix} \sim \ell_{\rm max}^2$
- How do we compress the data into their most relevant (and interpretable) features?

The String Landscape

The String Landscape

The String Landscape

Distribution of Large Scale Structure

Similar **clustering** and **void** features also appear in LSS:

Data is Subtle

N-body Simulations of the Large Scale Structure of the Universe:

$$f_{NL}^{\text{local}} = -250 \qquad \qquad f_{NL}^{\text{local}} = 0 \qquad \qquad f_{NL}^{\text{local}} = 250$$

 $f_{NL}^{local} = -0.9 \pm 5.1 \text{ (Planck)}$

https://mbiagetti.gitlab.io/cosmos/nbody/eos/

Data is Subtle

- Given a statistical system, the basic questions are:
 - How many phases are there? (unsupervised learning)
 - How are different phases distinguished? (supervised learning)
- Phase detection and classification can be subtle, e.g., the XY model:

$$H_{\rm XY} = -\sum_{\langle i,j \rangle} \cos\left(\theta_i - \theta_j\right)$$

has an **infinite order (Kosterlitz-Thouless)** phase transition with vortexantivortex pairs at low temperatures.

- First attempts to study the XY model and its KT transition using neutral networks and PCA failed in identifying vortices at low temperatures.
- Moreover, ML methods often lack the desired level of interpretability. Order parameters? Critical exponents?

Computer answer: "100 points with the following coordinates..." .

Computer answer: "100 points with the following coordinates..." Human answer: a noisy circle/ points sampled from an annulus

Topological Data Analysis

- When the space of data is huge, we cannot simply "visualize" the structure of data. We need a systematic diagnostic tool.
- Topological data analysis (TDA) is a systematic tool in applied topology to diagnose the "shape" of data.
- To turn a discrete set of data points (point cloud) into a topological space, we need a notion of *persistence*.

Vary simplicial complexes formed by the point cloud with continuous parameters (filtration parameters)

Topological Data Analysis

- TDA is widely used in other fields, e.g., imaging, neuroscience, drug design; little (if any) has been explored in physics.
- TDA can be used in conjunction with ML: presisten homology teaches us the grammar of data; natural to define a log of loss function.
- We developed TDA for a variety of physics contexts:

String Landscape [Cole, GS, '18]; [Cole, Schachner, GS, '19]

CMB [Cole, GS, '17] Large Scale Structures [Biagetti, Cole, GS, '20]

Phases of Matter [Cole, Loges, GS, '20]

Topological Data Analysis

Topology

The "shape" properties of an object that are preserved under **continuous deformations** (e.g., stretching, twisting, crumpling, bending) but **not tearing or gluing**.

Topology

The "shape" properties of an object that are preserved under **continuous deformations** (e.g., stretching, twisting, crumpling, bending) but **not tearing or gluing**.

Topology

The "shape" properties of an object that are preserved under **continuous deformations** (e.g., stretching, twisting, crumpling, bending) but **not tearing or gluing**.

Topology in Physics

String Theory

Particle spectrum & couplings, cosmological models, ...

Condensed Matter Physics

Quantum Hall effect, topological materials, ...

Simplicial Complexes

- In \mathbb{R}^3 , simplices are vertices, edges, triangles, and tetrahedra
- Simplicial complexes are collections of simplices that are:
 - Closed under intersection of simplices
 - Closed under taking faces of simplices
- Combinatorial representations easy calculations for computers

Source: Wikipedia, "Simplicial Complex"

Simplicial Homology

 Given a simplicial complex, We want to count independent p-cycles (i.e. p-loops) that are not boundaries of higher-dimensional objects

• Betti numbers:

- 0-th Betti number is number of connected components
- p-th Betti number is number of independent p-loops
- In practice, homology calculation is a matrix reduction.

Persistence

- How to choose simplicial representation of our data?
- Persistent homology: vary simplicial representation Σ_{ν} of data with some filtration parameter $\,\nu\,$ such that

$$\nu_1 \leq \nu_2 \implies \Sigma_{\nu_1} \subseteq \Sigma_{\nu_2}$$

- Track each distinct feature's lifetime (birth and death)
- Intuition: "real" topological features persist, short-lived features are noise
- Procedure is stable against perturbations to data [Cohen-Steiner 2005]

 $\nu = 5$

Delaunay Triangulation

- The Vietoris-Rips construction has a *clique problem.*
- We can more efficiently consider subcomplexes of the Delaunay triangulation.
 - We can use an α -filtration corresponding to these subcomplexes
 - Also variations using DTM function to account for outliers
- The size of the Delaunay complex grows only as N^[D/2] for D≥3, in contrast to VR complex which grows exponentially with N.

VR: more simplices than necessary

Delaunay triangulation

Visualizing Persistent Homology

 Persistence diagrams are scatter plots of birth and death times for *individual* homology generators:

- Persistence image: vector space representation useful for deriving statistics
 - Construct density function by smoothing each cycle in diagram via kernel with persistence-dependent weight, e.g. $log(1 + \nu_{persist})$.
 - Downsample/average over grid for lower dimension statistics.

Topological Curves

- Topological curves: count cycles in particular regions of diagram.
 - D_p : deaths
 - P_p : persistences
 - B_p : births

• $b_p = -B_p + D_p$: Betti numbers

 D_p, P_p, B_p have interpretation of empirical distribution functions for deaths, etc. of cycles

Applying TDA to Cosmology

Matteo Biagetti

Alex Cole

- "Persistent Homology and Non-Gaussianity", A. Cole and GS, JCAP 1803, 025 (2018) [arXiv:1712.08159 [astro-ph.CO]].
- "The Persistence of Large Scale Structures I: Primordial non-Gaussianity", M. Biagetti, A. Cole and GS, [arXiv:2009.04819 [astro-ph.CO]].

Inflation

[Starobinsky];[Guth];[Linde];[Albrecht, Steinhardt];...

- Period of accelerated expansion in early universe
 - Solves flatness, horizon, and monopole problems
 - Predicts nearly scale-invariant, Gaussian curvature fluctuations
 - Source anisotropies in CMB, inhomogeneities in LSS
- A myriad of models. Taxonomy done mostly through their observables (n_s, r)

Anisotropies

• The lowest order correlation we can extract is the **power spectrum**:

$$\left\langle 0 \left| \hat{\mathcal{R}}_{\mathbf{k_1}} \hat{\mathcal{R}}_{\mathbf{k_2}} \right| 0 \right\rangle = (2\pi)^3 P_{\mathcal{R}}(k_1) \delta(\mathbf{k_1} + \mathbf{k_2}) \qquad \Delta_{\mathcal{R}}^2 = \left(\frac{k^3}{2\pi^2} \right) P_{\mathcal{R}}^2 \propto k^{n_s - 1}$$

- For a Gaussian theory, the power spectrum dictates all higher-pt correlations. But inflationary fluctuations are not perfectly Gaussian.
- The leading **non-Gaussianity** is the **bispectrum**:

$$\langle 0 | \hat{\mathcal{R}}_{\mathbf{k_1}} \hat{\mathcal{R}}_{\mathbf{k_2}} \hat{\mathcal{R}}_{\mathbf{k_3}} | 0 \rangle = (2\pi)^3 \, \delta^3 (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) F(\mathbf{k_1}, \mathbf{k_2}, \mathbf{k_3})$$

- Scaling and symmetries imply that F(k₁, k₂, k₃) is fixed by an overall size ~ f_{NL} and its ''shape'' F(1, k₂/k₁, k₃/k₁).
- More **powerful discriminator** of inflationary models.

Non-Gaussianities

- The bispectrum for single field slow-roll inflation was computed in [Maldacena, '02];[Acquaviva et al, '02]; its size is f_{NL} ~ O(ε,η):
- The bispectrum for **general single field inflation** was found to be parametrized by 5 parameters [Chen, Huang, Kachru, GS, '06]:

 There is also an "orthogonal shape" but it "looks" qualitatively like the equilateral shape (*challenging task for machine learning*).

Non-Gaussianities

• More complicated models can give rise to more shapes:

- Like scattering amplitudes in particle physics, non-Gaussianties can reveal interactions governing inflation: *cosmological collider*.
- In collider physics: use *different strategies* for different particles.

Measuring Non-Gaussianity

Harmonic space: fits with <u>templates</u> of bispectrum, trispectrum, etc.
 One can define a "cosine" between distributions:

$$\cos(F_1, F_2) = \frac{F_1 \cdot F_2}{(F_1 \cdot F_1)^{1/2} (F_2 \cdot F_2)^{1/2}}$$

• Some shapes are harder to find, e.g.,

Resonant shape (axion monodromy)

• Local NG: scale-dependent bias [Dalai et al]; [Matarrese, Verde]; [Slosar et al]

$$P_{hh}(k) = \left(b_g + \frac{12}{5} \frac{f_{\rm NL}^{\rm loc}}{\mathcal{M}(k)} b_{\zeta}\right)^2 P_{mm}(k) \qquad \mathcal{M}(k) \sim k^2 \qquad \text{at small k}$$
(large scales)

 Persistent homology probes multi-scale topology of the LSS data; turns out to be most sensitive to smaller scales [Biagetti, Cole, GS]

TDA on Non-Gaussianity

[Cole, GS, '17]

- We can neglect non-Gaussanity from non-linearities of gravity.
- Current bound from Planck:

$$f_{NL}^{local} = -0.9 \pm 5.1$$
 $f_{NL}^{equil} = -26 \pm 47$

[Biagetti, Cole, GS, '20]

- Larger number of modes
- Higher dimensional topologies: clusters, filaments, and voids are naturally phrased in topology.
- Topology probes tail of distribution
 →enhanced in late time observables.

TDA for CMB

[Cole, GS, '17]

- Sublevel topology changes when threshold passes critical points (cf. Morse theory).
- Topological simplification: approximate function by its network of critical points.

(Hotter points are deeper red)

Many distinct components, no loops

 $\nu = 0$

Many loops, fewer distinct components

(Sublevel set in black)

One connected component, many loops have been filled in

(Sublevel set in black)

TDA for CMB

[Cole, GS, '17]

- As warmup, we carried out TDA for local NG and with low-resolution CMB simulations [Elsner, Wandelt] ($\ell_{max} \sim 1024$) with varying $f_{NL}^{\rm local}$.
- We binned the persistence diagrams & performed likelihood analysis:

 NB: WMAP-resolution simulations. More important is the improvement of the sensitivity of topological statistics by factor of ~2 (compare to Betti numbers).

TDA for LSS

[Biagetti, Cole, GS, '20]

Cosmology surveys provide access to ~10 billion galaxies

Data's topology is more efficiently computed with α -filtration.

Scales of Topology

- Features at $\mathcal{O}(10) \ll 1000$ Mpc/h
- Contrast with scale-dependent bias in halo power spectrum which is sensitive to largest scales.
- We can compute persistence in sub-boxes of full simulations and subsample to uniform halo number.
- Besides voids, filament loops provide a new, competitive observable.

TDA for LSS: Pipeline

[Biagetti, Cole, GS]

- N-body EoS dataset: <u>https://mbiagetti.gitlab.io/cosmos/</u> <u>nbody/eos/</u>
- Compute the α-filtration (and its variants), persistence diagrams for subsampled N-body simulations.
 Process these into topological curves & persistence images.
- Subsampling accounts for observational unknowns and allows for use of templates with large f_{NL} .

TDA for LSS: Anomaly Detection with Templates

 Template method: compute templates corresponding to deviations from the fiducial cosmology.

$$\overrightarrow{T^{X}} \equiv \frac{1}{N_{r}} \sum_{i=1}^{N_{r}} \overrightarrow{S}_{NG_{i}}^{X} - \overrightarrow{S}_{G_{i}}^{X}$$
$$D_{\text{template}} = \frac{\left(\overrightarrow{S}_{\text{survey}} \cdot \overrightarrow{T} - \overrightarrow{S}_{\text{mock,avg}} \cdot \overrightarrow{T}\right)}{\sigma}$$

- Compare D_{template} to results from fiducial cosmology to account for cosmic variance. Set threshold for detection at e.g. 97.5%.
- Detection rate of 85% for $f_{NL} = 10$. Competitive w.r.t. detection rate of method using halo bias (72.7%)

[Biagetti, Cole, GS]

TDA for LSS: Degeneracies

[Biagetti, Cole, GS]

- Degeneracy test: to avoid false positives, compute template optimality via "cosine"
- Included in EoS: variation of σ_{8} . Cutoff for template optimality removes false detections of $f_{\rm NL}^{\rm loc} \neq 0$.
- Of the 3003 draws from NG10L, 2548 lie beyond the 97.5% confidence level. Of the 2548, all of them are assigned to correct template, none assigned to σ_8 template.
- Ongoing: compute degeneracies for wider range of cosmological parameters.

NB: results degrade significantly without subsampling

Phase Detection and Classification

Alex Cole

Gregory Loges

 "Quantitative and Interpretable Order Parameters for Phase Transitions from Persistent Homology," A. Cole, G. Loges and GS, [arXiv:2009.14231 [cond-mat.stat-mech]].

Phase Transitions

- Unsupervised (supervised) ML techniques have been used to detect (classify) phases of matter.
- Clustering algorithms, support vector machines and (deep) neural networks have been used to study such critical phenomena.
- **Drawbacks:** lack interpretability and often face difficulties in identifying order parameters.
- [Cole, Loges, GS, 20]: TDA can efficiently distinguish phases and provides interpretable order parameters for phase transitions.
- Encodes multiscale info: captures a system's approach towards scale invariance, enabling quantitative study of critical exponents.

Curse of Dimensionality

 For reasonably large systems, can we simply enumerate all states and go through the exercise of classifying them?

- Already for 1 \downarrow spins on a 50 \times 50 lattice in 2D, there are $2^{50} \times 2^{50} \sim 10^{752}$ states.
- We want to identify useful patterns by sampling a relatively small fraction of the configuration space.

Spin Systems and ML

- Success of ML (esp. for images) suggests naive dimensionality doesn't always spell doom.
- Statistical physics presents clean lab for studying ML techniques: we know the Hamiltonian, RG, ...
- Exchange between statistical physics and ML is rich (restricted Boltzmann machine, softmax, ...).
- Phase classification with ML [Carrasquilla, Melko;...].
- For illustrations, we applied TDA to 4 spin systems [Cole, Loges, GS].

	Unfrustrated	Frustrated
Discrete	Ising	Square-ice
Continuous	XY	Fully-frustrated XY

Detecting and Characterizing Phases [Cole, Loges, GS, '20]

• From the persistence images of spin systems, we can identify such varied phenomena as magnetization, frustration, (anti)vortices:

- Simplicity of ML architecture: phase classification and extraction of order parameters achieved via a simple logistic regression.
- Persistent homology compresses the data sets into their most relevant (and interpretable) features, i.e., the grammar of data.

Ising Model

• A system of **discrete spins** with Hamiltonian:

$$H_{Is} = -\sum_{\langle i,j \rangle} s_i s_j , \quad s_i \in \{-1,1\}$$

- Spontaneous magnetization below $T_c\approx 2.27,$ breaking \mathbb{Z}_2 symmetry.
- Well-studied (including critical exponents) largely in part to Onsager's exact solution, a good warmup.
- α -filtration on locations of spins align with majority

Ising Model: Topology

- For low-temp phase: 1-cycles are very small, either lattice spacingsized or barely bigger (isolated minority spin)
 - For high-temp phase: there is a distribution of births/deaths corresponding to randomly oriented spins.

•

Ising Model: Phase Classification

- For $T \in \{1.00, 1.05, \dots 3.50\}$, generate 1000 configurations.
- Train logistic regression using 25% of simulations at extreme temperatures:

- The trained logistic regression estimates $T_c \approx 2.37$ (lattice effects).
- Logistic regression coefficients identify the magnetization (features at lattice scale) as order parameter.

Ising Model: Critical Exponents

- Persistent homology captures multi-scale behavior near criticality.
- At criticality, the 1-cycle death probability density $D_T(d)$:

$$D_T(d) = Ad^{-\mu}e^{-d/a_{death}}, \quad a_{death} \sim |T - T_c|^{-\nu_{death}}, \quad \mu \approx 2, \, \nu_{death} \approx 1$$

• Using scaling arguments, proportion of clusters of k aligned spins:

 $P(\text{clusters of size } k) \sim k^{-\tau}$, $\tau \approx 2.032$ and $\xi \sim |T - T_c|^{-1}$

XY Model

• A system of **continuous spins** with Hamiltonian:

$$H_{XY} = -\sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j)$$

- Kosterlitz-Thouless transition at $T_{XY} = 0.892$
- At low temp, there are bound **vortex-antivortex** pairs, while at high temp, free y_{ortices} proliferate and spins farter and pmly oriented. $\langle f \rangle = 0$
- Sublevel filtration: given Morse function $f: \Lambda \to S^1$, consider the sublevel sets $f^{-1}[-\pi, \nu]$:

T=1.50

XY Model: Topology

- In low-temp phase, vortex-antivortex pairs manifest as early-born 0cycles and late-born 1-cycles.
- Lattice periodicity: two immortal 1-cycles and one immortal 0-cycle.
- High-temp phase has more critical points, worth keeping in mind when comparing normalized persistence images.

XY Model: Phase Classification

- Critical temperature estimated as $T_{XY} \sim 0.9$
- Logistic regression coefficients: in low-temperature phase, lots of probability density assigned to vortex features, which fall in specific regions of persistence images.

Andreas Schachner

- "Topological Data Analysis for the String Landscape," A. Cole and GS, JHEP 03 (2019), 054 [arXiv:1812.06960 [hep-th]].
- "Searching the Landscape of Flux Vacua with Genetic Algorithms," A. Cole, A. Schachner and GS, JHEP 11 (2019), 045 [arXiv:1907.10072 [hep-th]].

Summary

- Persistent homology compresses data in an info rich way: interpretable observables amendable to statistical analysis.
- TDA for LSS [Biagetti, Cole, GS]:
 - Competitive constraints on local NG at smaller scales; can break degeneracies with other cosmological parameters.
 - Reproduce previous results on void size function and suggests new observables: filament loops formed by dark matter halos.
 - Future: other NG shapes and other cosmological parameters.
- TDA for Phase Transitions [Cole, Loges, GS]:
 - Quantitative & interpretable order parameters and critical exponents obtained by a simple logistic regression. Method can be improved further with advanced ML architecture.
 - Future: explore in light of persistent homology how ML pipelines utilize multiscale info to form internal representations of datasets.