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Data is BIG

Table 1: A table taken from [1] summarizing projected computing needs for cosmology simulations and experiments.
Here PB stands for petabytes (⇠ 1015 bytes) and EB stands for exabytes (⇠ 1018 bytes). Analyzing large data sets and
constructing large theoretical simulations are ever-growing in importance.

1 Introduction
Data science is the methodical approach of processing and understanding large, complex data sets by combining the
methods of statistics, computer science, and logic with domain science to extract knowledge where simple observation
by human investigators would fail, where data sets become so overwhelming that even an army of scientists would be
no match to the onslaught of data. The methods that data science brings to bear carry commonalities across domain
science, making it a truly interdisciplinary field and a natural investment target for the faculty cluster hire initiative.

The fields of cosmology and astronomy are currently going through a data revolution, entering what is often called
the survey era. Starting with the Sloan Digital Sky Survey (SDSS) in 2000, astronomical observation has come to
rely more and more on large telescopes systematically observing large regions of the sky with ever deeper exposures
and ever increasing detail, adding spectral and temporal dimensions. These surveys produce exponentially increasing
amounts of data in the quest to understand the origin of the cosmic structure (see Table 1).

In order to answer some of the most important modern scientific questions, vast samples of astrophysical objects
must be observed with multiple experimental techniques and probes, both to reach the desired experimental sensitivi-
ties and to break degeneracies. The diagnostic power of the new massive surveys of the cosmos (described below) lies
in comparing the volume of high-dimensional data to increasingly sophisticated theoretical physics models. The
data mining complexity of this approach presents a qualitatively new challenge which can only be tackled by drawing
on synergistic advances in statistics and data science.

Some of the research activities in this interdisciplinary proposal (a collaboration of Physics, Astronomy, and
Statistics) are linked to Nobel-prize-worthy fundamental research, and through this collaboration, it is extremely
likely that the impact of the UW group in this global endeavor will be significant. Because the volume of data is
expected to be too large for traditional “human” analysis, innovative techniques relying on training machines and
novel stochastic methods must be developed.

The UW-Madison with its Center for High Throughput Computing (CHTC) is ideally positioned to successfully
solve the challenges of this large scale scientific computing problem. The CHTC leads the successful nationwide Open
Science Grid (OSG) collaboration and facilities, and has enabled building many national and international scientific
computing communities. In particular the CHTC has had a long and productive collaboration with physicists and
astronomers in the LHC experiments, IceCube, LIGO, and DES. The CHTC has also started working with NCSA on
their LSST computing needs, which as explained below is significant to the broad goals of the cluster hire.

In §2, we elaborate on the domain-specific science drivers, how data science is necessary to address them, and
explain why it is important for UW-Madison to have greater strength in this area through a cluster hire.

2 Research Description
2.1 Theoretical Cosmology
2.1.1 Science

One of the main goals of theoretical cosmology is to understand the origin of cosmic structure. This means that starting
with a hypothetical theory of initial conditions for the underlying field theory that governs the universe, we compute
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Cosmology is marching into a big data era:

~ 200PB of archived data in the first 7 years of the LHC.

In terms of sheer volume, nothing trumps the volume of string 
theoretical data. It has been estimated that the number of vacua:

10500 (Type IIB flux vacua) 10272,000 (F theory flux vacua)

Table taken from 1311.2841



Dimensionality Reduction

• This data lives in high-dimensional phase space

• N particles: 

• Function on sphere: 

• How do we compress the data into their most relevant (and 
interpretable) features?

dim ∼ Nparticles

dim ∼ Npix ∼ ℓ2
max
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Distribution of String Vacua

Flux vacua on rigid CY

where the relevant constants µ0, µ1, µ2 and µ3 are given by

µ0 = i(2π)6(a0c0 − c0a0), µ1 = i(2π)6(c0a1 − c1a0 − d1b0),

µ2 = (2π)5|d1|2, µ3 = i(2π)6(c1a1 − a1c1 + d1b1 − b1d1).
(5.4)

One finds the following expression for the Kähler metric

gxx = −µ2

µ0
ln |x|2 +

(

|µ1|2

µ2
0

− 2µ2 + µ3

µ0

)

+O(|x| ln |x|). (5.5)

Then the curvature form is

Rxx =
1

4|x|2
1

(ln |x|+ C)2
, (5.6)

where the constant C is determined to be

C = 1− |µ1|2

2µ0µ2
+

µ3

2µ2
≈ −0.738. (5.7)

In computing Kähler covariantized derivatives with respect to ψ, it is also useful to note

that

∂xKψ = −µ1

µ0
− µ2

µ0
x ln |x|2 +O(x). (5.8)

5.2. Distribution of flux vacua
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Fig. 3: Each point is a vacuum on the x = 1−ψ complex plane. The monte carlo

simulation data is: number of random fluxes N = 5 × 107; random flux interval
f, h ∈ (−100, 100); complex structure ψ space region |x| < 0.04. There are 11249

vacua, but 6306 of them arise at |x| < .00001 and have been removed from the plot
(they would all cluster at the origin).
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techniques. In the approximation that the vacuum density is just the volume form on

moduli space, the surface area of the boundary will just be the surface area of the boundary

in moduli space. Taking the region R to be a sphere in moduli space of radius r, we find

A(S1)

V (S1)
∼

√
K

r

so the condition Eq. (5.2) becomes

L >
K

r2
. (5.3)

Thus, if we consider a large enough region, or the entire moduli space in order to find

the total number of vacua, the condition for the asymptotic vacuum counting formulas we

have discussed in this work to hold is L > cK with some order one coefficient. But if we

subdivide the region into subregions which do not satisfy Eq. (5.3), we will find that the

number of vacua in each subregion will show oscillations around this central scaling. In

fact, most regions will contain a smaller number of vacua (like S above), while a few should

have anomalously large numbers (like S′ above), averaging out to Eq. (5.1).

5.1 Flux vacua on rigid Calabi-Yau

As an illustration of this, consider the following toy
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Figure 6: Values of τ for rigid CY
flux vacua with Lmax = 150.

problem with K = 4, studied in [1]. The configuration

space is simply the fundamental region of the upper

half plane, parameterized by τ . The flux superpoten-

tials are taken to be

W = Aτ + B

with A = a1 + ia2 and B = b1 + ib2 each taking values

in Z+ iZ. This would be obtained if we considered flux

vacua on a rigid Calabi-Yau, with no complex structure

moduli, b3 = 2, and the periods Π1 = 1 and Π2 = i.

The tadpole condition NηN/2 ≤ L becomes

ImA∗B ≤ L (5.4)

One then has

DW = 0 ↔ τ̄ = −B

A
. (5.5)

Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound Eq. (5.4), taking one representative of each orbit

of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,

0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from

Eq. (5.5) and map it into the fundamental region by an SL(2, Z) transformation. The

resulting plot for L = 150 is shown in figure 6.
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Flux vacua of an orientifold of 

CY hypersurface in WP41,1,1,1,4

x=1-ψ plane

𝜏-plane

Toroidal Flux vacua with W=0
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Fig. 5: Distribution of W = 0 vacua in complex structure fundamental domain
for L = 2000 for large values of Im τ .

are given by

max(Im τ) ∼
√

L

2
at Re τ = 0,±0.5 . (4.57)

The next peaks have height Im τ ∼
√

L/4 at Re τ = ±0.25. We also confirm numerically

that the distribution of vacua in the complex structure fundamental domain is in accord

with 1/(Im τ)2.
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Fig. 6: Void structure of distribution of W = 0 vacua in dilaton fundamental
domain for L = 600.
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Distribution of Large Scale Structure

Similar clustering and void features also appear in LSS:



Data is Subtle

N-body Simulations of the Large Scale Structure of the Universe:

 https://mbiagetti.gitlab.io/cosmos/nbody/eos/

f local
NL = − 250 f local

NL = 250f local
NL = 0

f local
NL = − 0.9 ± 5.1 (Planck)



Data is Subtle

• Given a statistical system, the basic questions are:

• How many phases are there? (unsupervised learning)

• How are different phases distinguished? (supervised learning)

• Phase detection and classification can be subtle, e.g., the XY model:

has an infinite order (Kosterlitz-Thouless) phase transition with vortex-
antivortex pairs at low temperatures.

• First attempts to study the XY model and its KT transition using neutral 
networks and PCA failed in identifying vortices at low temperatures. 

• Moreover, ML methods often lack the desired level of interpretability. 
Order parameters? Critical exponents?

is highly degenerate: any configuration with exactly two up and two down spins adjacent to

every vertex has zero energy. This leads to frustration in the low-energy dynamics, as adjacent

vertices v compete to minimize (
P

i:v si)
2. This competition takes place at small scales, so that

many 1-cycles die very quickly in the filtration. Nevertheless, we are still able to identify a shift

in the distribution of p-cycle births and deaths and reliably classify samples into two phases.

In this case, the frustration introduces a particular length scale to the topological features in

the low-temperature phase, while the distribution of sizes in the high-temperature phase is less

restricted.

3.3.1 Logistic regression and order parameter

We generate 1000 sample spin configurations for a 50⇥50 lattice with 5000 spins at temperatures

T 2 {0.0, 0.1, . . . , 4.0}. Each sample gives a persistence image with a weight log (1 + p), such

as that shown in Figure 9a. Again training a logistic regression only on those persistence

images with extreme temperatures (Figure 9b), we find an estimate of T ⇡ 1.9 for the critical

temperature. From the logistic regression coe�cients on the right-hand side of Figure 9b we

see that as the temperature increases there is a tendency for 1-cycles to be born later or to be

longer-lived. Both are indicative of a changing local structure in the spin configurations. In

the low-temperature phase, it is energetically beneficial for neighboring vertices to coordinate,

resulting in an regular patterns of alternating up and down spins. This regularity forces 1-cycles

to live at smaller scales than in the high-temperature phase.

3.4 XY model

The XY model is a continuous-spin generalization of the Ising model. At each site of the square

lattice spins take values in S
1 and are governed by

HXY = �

X

hi,ji

cos (✓i � ✓j) . (7)

There is a well-known KT phase transition at TXY ⇡ 0.892 (see [38,39], among others). This is

an infinite-order phase transition where at low temperatures there are bound vortex-antivortex

pairs while at high temperatures free vortices proliferate and spins are randomly oriented.

3.4.1 Logistic regression and order parameter

With continuous spins each spin configuration implicitly contains much more information about

the underlying dynamics. For temperatures T 2 {0.05, 0.10, . . . , 1.50} we generate 200 sample

spin configurations on a 20⇥ 20 lattice with 400 spins. Persistence images are created for each

sample, as in Figure 10a. The zeroth homology, in contrast to the ↵-complexes used for discrete

spins, is very rich for the cubical complexes and we include both H0 and H1 persistence data

in the persistence images. There is always a single 0-cycle and two 1-cycles which never die:

these correspond to the p-cycles of the torus on which the lattice lives. We distinguish these

immortal p-cycles from those cycles with late deaths (d ⇡ ⇡) by giving the former a death of
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Describe this:



Computer answer: 
“100 points with 
the following coordinates…”

Human answer: 
a noisy circle/ points 
sampled from an annulus

Data is often well-described 
by models based on shape

Describe this:



Topological Data Analysis
• When the space of data is huge, we cannot simply “visualize” 

the structure of data. We need a systematic diagnostic tool.
• Topological data analysis (TDA) is a systematic tool in applied 

topology to diagnose the “shape” of data. 
• To turn a discrete set of data points (point cloud) into a 

topological space, we need a notion of persistence.

Vary simplicial complexes formed 
by the point cloud with  
continuous parameters  
(filtration parameters)



Topological Data Analysis
• TDA is widely used in other fields, e.g., imaging, neuroscience, drug 

design; little (if any) has been explored in physics.

• TDA can be used in conjunction with ML: persistent homology teaches us 
the grammar of data; natural to define a topological loss function.

• We developed TDA for a variety of physics contexts:

techniques. In the approximation that the vacuum density is just the volume form on

moduli space, the surface area of the boundary will just be the surface area of the boundary

in moduli space. Taking the region R to be a sphere in moduli space of radius r, we find
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problem with K = 4, studied in [1]. The configuration
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Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound Eq. (5.4), taking one representative of each orbit

of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,
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Developing Topological Observables 
in Cosmology

Alex Cole 
PhD Thesis Defense 

August 12, 2020

https://mbiagetti.gitlab.io/cosmos/nbody/

String Landscape

[Cole, GS, ’18]; 

[Cole, Schachner, GS, ’19]

CMB

[Cole, GS, ’17]

Large Scale Structures

[Biagetti, Cole, GS, ’20]

Phases of Matter

[Cole, Loges, GS, ’20]



Topological Data Analysis
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bending) but not tearing or gluing.



Topology
The “shape” properties of an object that are preserved under 
continuous deformations (e.g., stretching, twisting, crumpling, 
bending) but not tearing or gluing.



Topology
The “shape” properties of an object that are preserved under 
continuous deformations (e.g., stretching, twisting, crumpling, 
bending) but not tearing or gluing.



Topology in Physics

4(5) THE NOBEL PRIZE IN PHYSICS 2016 � THE ROYAL SWEDISH ACADEMY OF SCIENCES � HTTP://KVA.SE

In the quantum Hall e#ect, electrons move relatively freely in the layer between the semi-conduc-
tors and form something called a topological quantum $uid. In the same way as new properties 
often appear when many particles come together, electrons in the topological quantum $uid also 
display surprising characteristics. Just as it can’t be ascertained whether there is a hole in a co#ee cup 
by only looking at a small part of it, it is impossible to determine whether electrons have formed a 
topological quantum $uid if you only observe what is happening to some of them. However, con-
ductance describes the electrons’ collective motion and, because of topology, it varies in steps; it is 
quantised. Another characteristic of the topological quantum $uid is that its borders have unusual 
properties. These were predicted by the theory and were later con%rmed experimentally. 

Another milestone occurred in 1988, when Duncan Haldane discovered that topological quantum 
$uids, like the one in the quantum Hall e#ect, can form in thin semiconductor layers even when 
there is no magnetic %eld. He said he’d never dreamed of his theoretical model being realised experi-
mentally but, as recently as 2014, this model was validated in an experiment using atoms that were 
cooled to almost absolute zero. 

New topological materials in the pipeline
In much earlier work, from 1982, Duncan Haldane made a prediction that amazed even the experts in 
the %eld. In theoretical studies of chains of magnetic atoms that occur in some materials, he discove-
red that the chains had fundamentally di#erent properties depending on the character of the atomic 
magnets. In quantum physics there are two types of atomic magnets, odd and even. Haldane demon-
strated that a chain formed of even magnets is topological, while a chain of odd magnets is not. Like 
the topological quantum $uid, it is not possible to determine whether an atomic chain is topological 
or not by simply investigating a small part of it. And, just as in the case of the quantum $uid, the 
topological properties reveal themselves at the edges. Here, this is at the ends of the chain, because 
the quantum property known as spin halves at the ends of a topological chain. 

Initially, no one believed Haldane’s reasoning about atomic chains; researchers were convinced that 
they already completely understood them. But it turned out that Haldane had discovered the %rst 
example of a new type of topological material, which is now a lively %eld of research in condensed 
matter physics.

POW

POW

0 holes

1 hole

2 holes

3 holes
electrical
conductance

Fig 3. Topology. This branch of mathematics is interested in properties that change step-wise, like the number of holes in the above 
objects. Topology was the key to the Nobel Laureates’ discoveries, and it explains why electrical conductivity inside thin layers chan-
ges in integer steps. 

String Theory
Particle spectrum & couplings, 
cosmological models, …

Condensed Matter Physics
Quantum Hall effect, topological
materials, …



• In      , simplices are vertices, 
edges, triangles, and tetrahedra

• Simplicial complexes are 
collections of simplices that are:

• Closed under intersection of 
simplices

• Closed under taking faces of 
simplices

• Combinatorial representations — 
easy calculations for computers

Source: Wikipedia, “Simplicial Complex”

R3

Simplicial Complexes



• Given a simplicial complex, We want to count 
independent p-cycles (i.e. p-loops) that are 
not boundaries of higher-dimensional objects

• Betti numbers:

• 0-th Betti number is number of connected 
components

• p-th Betti number is number of 
independent p-loops

• In practice, homology calculation is a matrix 
reduction.

vs.

�0 = 1 �0 = 1

�1 = 1 �1 = 0

Simplicial Homology



• How to choose simplicial representation of our data?

• Persistent homology: vary simplicial representation       of data 
with some filtration parameter       such that

• Track each distinct feature’s lifetime (birth and death)

• Intuition: “real” topological features persist, short-lived features 
are noise

• Procedure is stable against perturbations to data [Cohen-Steiner 2005]

⌫1  ⌫2 =) ⌃⌫1 ✓ ⌃⌫2

⌫
⌃⌫

Persistence



Example: Vietoris-Rips filtration
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ν = 1



Example: Vietoris-Rips filtration
ν = 2



Example: Vietoris-Rips filtration
ν = 3



Example: Vietoris-Rips filtration
ν = 5



• The Vietoris-Rips construction has a clique 
problem.

• We can more efficiently consider sub-
complexes of the Delaunay triangulation.

• We can use an -filtration 
corresponding to these subcomplexes

• Also variations using DTM function 
to account for outliers

• The size of the Delaunay complex grows 
only as N[D/2] for D≥3, in contrast to VR 
complex which grows exponentially with N.

α
VR: more simplices than necessary

Delaunay triangulation

Delaunay Triangulation



• Persistence diagrams are scatter plots of birth and death times 
for individual homology generators: 

• Persistence image: vector space representation useful for 
deriving statistics

Visualizing Persistent Homology

• Construct density function by smoothing each 
cycle in diagram via kernel with persistence-
dependent weight, e.g. .


• Downsample/average over grid for lower 
dimension statistics.

log(1 + νpersist)



• Topological curves: count cycles in 
particular regions of diagram.

• : deaths

• : persistences

• : births

• : Betti numbers

Dp

Pp

Bp

bp = − Bp + Dp

 have interpretation of empirical distribution functions for deaths, etc. of cycles Dp, Pp, Bp

Topological Curves

Birth
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Bp

bp



https://mbiagetti.gitlab.io/cosmos/nbody/

Applying TDA to Cosmology

“Persistent Homology and Non-
Gaussianity”,  A. Cole and GS, JCAP 
1803, 025 (2018)  [arXiv:1712.08159 
[astro-ph.CO]].


“The Persistence of Large Scale 
Structures I: Primordial non-Gaussianity”, 
M. Biagetti, A. Cole and GS, 
[arXiv:2009.04819 [astro-ph.CO]].

Matteo Biagetti Alex Cole



• Period of accelerated expansion in 
early universe

• Solves flatness, horizon, and 
monopole problems

• Predicts nearly scale-invariant, 
Gaussian curvature fluctuations

• Source anisotropies in CMB, 
inhomogeneities in LSS

• A myriad of models. Taxonomy done 
mostly through their observables (ns, r)

Inflation
[Starobinsky];[Guth];[Linde];[Albrecht, Steinhardt];…



• The lowest order correlation we can extract is the power spectrum: 

• For a Gaussian theory, the power spectrum dictates all higher-pt 
correlations. But inflationary fluctuations are not perfectly Gaussian.

• The leading non-Gaussianity is the bispectrum: 

• Scaling and symmetries imply that F(k1, k2, k3) is fixed by an overall 
size ~ fNL and its ‘’shape” F(1, k2/k1, k3/k1).

• More powerful discriminator of inflationary models.

D
0
���R̂k1R̂k2

��� 0
E
= (2⇡)3PR(k1)�(k1 + k2)

Anisotropies 

�2
R =

✓
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2⇡2

◆
P 2
R / kns�1

h0| R̂k1R̂k2R̂k3 |0i = (2⇡)3 �3(k1 + k2 + k3)F (k1,k2,k3)



• The bispectrum for single field slow-roll inflation was computed in 
[Maldacena, ’02];[Acquaviva et al, ‘02]; its size is fNL ~ O(ε,η): 

• The bispectrum for general single field inflation was found to be 
parametrized by 5 parameters [Chen, Huang, Kachru, GS, ‘06]: 

• There is also an “orthogonal shape” but it “looks” qualitatively like 
the equilateral shape (challenging task for machine learning).

Non-Gaussianities

Local shape
f local
NL ⇠ O(✏, ⌘, s)

Equilateral shape
fequil
NL ⇠ O(

1

c2s
� 1,�)

k3

k2

k3

k2



Non-Gaussianities

• More complicated models can give rise to more shapes:

• Like scattering amplitudes in particle physics, non-Gaussianties can 
reveal interactions governing inflation: cosmological collider.

• In collider physics: use different strategies for different particles.

Notice that in this range fφ∗ ! 1 is always satisfied.
The shape of resonant non-Gaussianity for axion monodromy inflation is shown in Fig-

ure 2 for b = 10−2, fφ∗ = 2× 10−2, and fixed k1 = k∗ = 0.002Mpc−1. We chose this value of
f because both the leading contribution and the subleading contribution in fφ∗ are clearly
visible. Notice that as the value of k1 changes, the phase of the oscillation changes.
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Figure 2: This plot shows the shape G(k1, k2, k3)/(k1k2k3) of resonant non-Gaussianity for
the linear potential of axion monodromy inflation with b = 10−2, fφ∗ = 2 × 10−2 and fixed
k1 = k∗ = 0.002Mpc−1. We use the notation x2 = k2/k1 and x3 = k3/k1. The triangle
inequality implies x2+x3 ≤ 1 and the quantity is symmetric under interchange of x2 and x3

so that we show in the plot only the region 1/2 ≤ x2 ≤ 1.

We find that our analytic result for f res agrees with the values obtained by numerical
integration in [13] at the per cent level.15

3.2. Consistency relation

As pointed out in [11] (see also [12]), in the limit in which one of the momenta, say, k3
is much less than the other two, which are then roughly equal, k3 ! k1 ≈ k2 = k, the
three-point function is related to the two-point function by a consistency relation

lim
k3→0

〈R(k1, t)R(k2, t)R(k3, t)〉 ' −|R(o)
k3
|2

1

H(tk)

d

dtk
〈R(k1, t)R(k2, t)〉 , (3.31)

15For the comparison, notice that [13] uses a momentum dependent quantity f̃NL. In the equilateral limit,

they extract their quantity fA = −f̃ (eq)
NL . This quantity is related to our f res according to fA = 10f res/9.
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Figure 5: The shape of |Ãc|/k1k2k3

τc = −M/Hk. Since the integrand is regulated at τ = −1/Kcs due to its rapid oscillation,
if τc < −1/Kcs, the cutoff M has no effects to our calculation. That is, for K " kH/Mcs,
we will see the behaviors shown in Fig. 4 & 5 near the folded triangle limit. But within
K < kH/Mcs, the cutoff takes effect first, the divergence behavior will be replaced. The
details depend on the nature of the cutoff, e.g. a naive sharp cutoff will introduce oscillatory
behavior.

7 Conclusion

The forthcoming suite of cosmological experiments will nail down with ever greater precision
the parameters of the inflationary model that yielded our homogeneous, isotropic universe.
Some measurements, like the value of the spectral index and the nature of its running,
are guaranteed to occur. Others, like a detection of primordial gravitational waves, are
not necessarily expected to occur on theoretical grounds (since models with very small r
seem more natural as quantum field theories), but would be tremendously exciting and
instructive if they do. The discovery of significant non-Gaussian scalar fluctuations falls into
this latter category. While the simplest models of inflation do not produce this phenomenon,
its discovery would tell us something qualitatively important about the inflationary epoch,
and experiments sensitive enough to measure |fNL| ≥ 5 will be launched in the next two
years. For this reason, we feel it is worthwhile to parametrize the reasonable possibilities,
and understand the qualitative physics of the models that produce them.

In this paper, we have taken some steps in this direction for generic single-field models.
There are several clear directions for further work:

• It would be nice to derive the same formulae governing non-Gaussianities as arising di-
rectly from symmetry principles. Perhaps these would be encapsulated most neatly in a
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Figure 7: Shapes of bispectra with intermediate forms. We plot (p1p2p3)2F with ν =

0, 0.3, 0.5, 1. The plot is normalized such that (p1p2p3)2F = 1 for p1 = p2 = p3 = 1.

To plot, we define the function F as

〈ζ3〉 ≡ F (p1, p2, p3)P
2
ζ (2π)

7δ3(
∑

i

pi) . (4.14)

To illustrate the shape of a scale-invariant bispectrum, we conventionally normalize the

amplitude F by multiplying a factor of (p1p2p3)2. This makes it dimensionless and scale-

independent.

From Fig. 7, we can see that when ν is small, the shape looks more like an equilateral

shape. When ν gets larger, the shape looks more like a local shape. In Sec. 5, we will study

the analytical properties and explain the underlying physics of these shapes.

Finally, we would like to parameterize the magnitude of the non-Gaussianities in terms

of an estimator f int
NL. According to the convention in the bispectrum literature, we define the

number f int
NL by matching with the f local

NL in the local shape ansatz in the equilateral limit. In
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Non Bunch-Davis Axion Monodromy Quasi-single field



• Harmonic space: fits with templates of bispectrum, trispectrum, etc. 
One can define a “cosine” between distributions:

• Some shapes are harder to find, e.g.,  

• Local NG: scale-dependent bias [Dalai et al]; [Matarrese,Verde];[Slosar et al]

• Persistent homology probes multi-scale topology of the LSS data; 
turns out to be most sensitive to smaller scales [Biagetti, Cole, GS]

Measuring Non-Gaussianity

cos(F1, F2) =
F1 · F2

(F1 · F1)1/2 (F2 · F2)
1/2

Notice that in this range fφ∗ ! 1 is always satisfied.
The shape of resonant non-Gaussianity for axion monodromy inflation is shown in Fig-

ure 2 for b = 10−2, fφ∗ = 2× 10−2, and fixed k1 = k∗ = 0.002Mpc−1. We chose this value of
f because both the leading contribution and the subleading contribution in fφ∗ are clearly
visible. Notice that as the value of k1 changes, the phase of the oscillation changes.
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Figure 2: This plot shows the shape G(k1, k2, k3)/(k1k2k3) of resonant non-Gaussianity for
the linear potential of axion monodromy inflation with b = 10−2, fφ∗ = 2 × 10−2 and fixed
k1 = k∗ = 0.002Mpc−1. We use the notation x2 = k2/k1 and x3 = k3/k1. The triangle
inequality implies x2+x3 ≤ 1 and the quantity is symmetric under interchange of x2 and x3

so that we show in the plot only the region 1/2 ≤ x2 ≤ 1.

We find that our analytic result for f res agrees with the values obtained by numerical
integration in [13] at the per cent level.15

3.2. Consistency relation

As pointed out in [11] (see also [12]), in the limit in which one of the momenta, say, k3
is much less than the other two, which are then roughly equal, k3 ! k1 ≈ k2 = k, the
three-point function is related to the two-point function by a consistency relation

lim
k3→0

〈R(k1, t)R(k2, t)R(k3, t)〉 ' −|R(o)
k3
|2

1

H(tk)

d

dtk
〈R(k1, t)R(k2, t)〉 , (3.31)

15For the comparison, notice that [13] uses a momentum dependent quantity f̃NL. In the equilateral limit,

they extract their quantity fA = −f̃ (eq)
NL . This quantity is related to our f res according to fA = 10f res/9.
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Resonant shape 
(axion monodromy)

Phh(k) = (bg +
12
5

f loc
NL

ℳ(k)
bζ)

2

Pmm(k) ℳ(k) ∼ k2 at small k
(large scales)



TDA on Non-Gaussianity

[Cole, GS, ’17] [Biagetti, Cole, GS, ’20]

• We can neglect non-Gaussanity 
from non-linearities of gravity.

• Current bound from Planck:

• Larger number of modes
• Higher dimensional topologies:

clusters, filaments, and voids are
naturally phrased in topology.

• Topology probes tail of distribution
→enhanced in late time observables.

f local
NL = − 0.9 ± 5.1 f equil

NL = − 26 ± 47



TDA for CMB
[Cole, GS, ’17]

Subν = f −1(−∞, ν]
f (x)

b0 = 1
b0 = 2

b0 = 1

• Sublevel topology changes when threshold passes critical 
points (cf. Morse theory).

• Topological simplification: approximate function by its network 
of critical points.



(Hotter points are 
deeper red)

Sublevel Filtration



⌫ = �1

Many distinct 
components, 

no loops

(Sublevel set in 
black)

Sublevel Filtration



⌫ = 0

Many loops, fewer 
distinct components

(Sublevel set in 
black)

Sublevel Filtration



⌫ = 1
One connected 

component, many 
loops have been filled 

in

(Sublevel set in 
black)

Sublevel Filtration



TDA for CMB
• As warmup, we carried out TDA for local NG and with low-resolution 

CMB simulations [Elsner, Wandelt] ( ) with varying .

• We binned the persistence diagrams & performed likelihood analysis:

• NB: WMAP-resolution simulations. More important is the improvement 
of the sensitivity of topological statistics by factor of ~2 (compare to 
Betti numbers).

ℓmax ∼ 1024 f local
NL

68% confidence constraints

[Cole, GS, ’17]



TDA for LSS
[Biagetti, Cole, GS, ’20]

Cosmology surveys provide access to 
~10 billion galaxies

Data’s topology is more efficiently 
computed with -filtration.α

https://mbiagetti.gitlab.io/cosmos/nbody/



• Features at  Mpc/h

• Contrast with scale-dependent bias in halo power spectrum which is 
sensitive to largest scales.

• We can compute persistence in sub-boxes of full simulations and 
subsample to uniform halo number.

• Besides voids, filament loops provide a new, competitive observable.

𝒪(10) ≪ 1000

Clusters

Filaments

Filaments Voids

Scales of Topology



[Biagetti, Cole, GS]

TDA for LSS: Pipeline

• N-body EoS dataset:                         
https://mbiagetti.gitlab.io/cosmos/
nbody/eos/

• Compute the -filtration (and its 
variants), persistence diagrams for 
subsampled N-body simulations. 
Process these into topological 
curves & persistence images.

• Subsampling accounts for 
observational unknowns and allows 
for use of templates with large   .

α

fNL

Birth
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Dp

Pp

Bp

bp

https://mbiagetti.gitlab.io/cosmos/nbody/eos/
https://mbiagetti.gitlab.io/cosmos/nbody/eos/


• Template method: compute templates 
corresponding to deviations from the fiducial 
cosmology.

       

       

• Compare  to results from fiducial cosmology 
to account for cosmic variance. Set threshold for 
detection at e.g. 97.5%.

• Detection rate of 85% for . Competitive w.r.t. 
detection rate of method using halo bias (72.7%)

⃗TX ≡
1
Nr

Nr

∑
i=1

⃗S X
NGi

− ⃗S X
Gi

Dtemplate =
( ⃗S survey ⋅ ⃗T − ⃗S mock,avg ⋅ ⃗T )

σ

Dtemplate

fNL = 10

°6 °4 °2 0 2 4 6 8 10
Dtemplate
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97.5 percentile

Detection: 84.8 %

Statistic: B1
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Detection: 73.9 %

Statistic: D1

G85L

NG10L

TDA for LSS: Anomaly Detection with Templates
[Biagetti, Cole, GS]



• Degeneracy test: to avoid false positives, 
compute template optimality via “cosine”

• Included in EoS: variation of . Cutoff 
for template optimality removes false 
detections of . 

• Of the 3003 draws from NG10L, 2548 lie 
beyond the 97.5% confidence level. Of the 
2548, all of them are assigned to correct 
template, none assigned to  template. 

• Ongoing: compute degeneracies for wider 
range of cosmological parameters.

σ8

f loc
NL ≠ 0

σ8

NB: results degrade significantly
without subsampling

TDA for LSS: Degeneracies
[Biagetti, Cole, GS]



Phase Detection and Classification

(a) Is, T = 2.0 (b) SI, T = 1.0 (c) XY, T = 0.15 (d) FFXY, T = 0.1

(e) Is, T = 3.5 (f) SI, T = 4.0 (g) XY, T = 1.5 (h) FFXY, T = 1.2

Figure 5: Sample spin configurations in the low- and high-temperature phases for each model.

±, spins and the XY and fully-frustrated XY models have continuously varying spins. Sample

spin configurations for each model are generated at a number of temperatures using standard

Monte-Carlo sampling techniques. Example spin configurations at low and high temperatures

for each model are shown in Figure 5.

For each model considered, classification into two phases is performed using only the per-

sistence images. A subset of samples with extreme temperatures are used to train a logistic

regression and then the accuracy of the regression is evaluated using the known temperatures of

all samples. We normalize our persistence images using the `1-norm, so they may be interpreted

as probability densities for finding cycles with particular births/deaths for a given system. Un-

normalized persistence images contain information about the total number of p-cycles and also

lead to a successful classification.

3.1 Logistic regression

In the following sections we will be classifying spin configurations based on their persistence

images. Since the persistence images are information-rich, we are able to use perhaps the

simplest classification scheme, logistic regression, to great e↵ect. Here we quickly recall the

procedure of logistic regression. One benefit of logistic regression is that it is easy to tell what

aspects of the data are used by the classification algorithm. We will use these to extract order

parameters for the phase transitions under consideration.

Persistence images x 2 Rn (n ⇠ O(400) in our examples) are vectors of positive num-

bers representing the distribution of cycles in the birth-persistence plane. A logistic regression

9

Based on 2009.14231 with:

Gary Shiu 
(UW-Madison)

Gregory Loges 
(UW-Madison)

code: https://github.com/gloges/TDA-Spin-Models

“Quantitative and Interpretable Order Parameters for Phase 
Transitions from Persistent Homology,” A. Cole, G. Loges 
and GS, [arXiv:2009.14231 [cond-mat.stat-mech]].

Alex Cole

Gregory Loges



Phase Transitions

• Unsupervised (supervised) ML techniques have been used to 
detect (classify) phases of matter. 

• Clustering algorithms, support vector machines and (deep) neural 
networks have been used to study such critical phenomena.  

• Drawbacks: lack interpretability and often face difficulties in 
identifying order parameters.

• [Cole, Loges, GS, 20]: TDA can efficiently distinguish phases and 
provides interpretable order parameters for phase transitions.

• Encodes multiscale info: captures a system’s approach towards 
scale invariance, enabling quantitative study of critical exponents.



Curse of Dimensionality

• For reasonably large systems, can we simply enumerate all states 
and go through the exercise of classifying them?

• Already for ↑↓ spins on a  lattice in 2D, there are 
 states.

• We want to identify useful patterns by sampling a relatively small 
fraction of the configuration space. 

50 × 50
250 × 250 ∼ 10752

(T, P, λi)

Q: what is the system’s phase structure? 

Q: given a sample, can we determine the phase? 

Q: what is the interpretation of differences between 
 phases?

draw sample



Spin Systems and ML
• Success of ML (esp. for images) 

suggests naive dimensionality doesn’t 
always spell doom. 

• Statistical physics presents clean lab 
for studying ML techniques: we know 
the Hamiltonian, RG, ... 

• Exchange between statistical physics 
and ML is rich (restricted Boltzmann 
machine, softmax, …).

• Phase classification with ML 
[Carrasquilla, Melko;…].

• For illustrations, we applied TDA to 4 
spin systems [Cole, Loges, GS].

Spin Systems and ML
• Success of ML (esp. for images) suggests 

naive dimensionality doesn’t always spell 
doom. 

• Statistical physics presents clean lab for 
studying ML techniques: we know the 
Hamiltonian, RG, … 

• Exchange between statistical physics and 
ML is rich (RBM, softmax, …) 

• Phase classification with ML [Carrasquilla, 
Melko;…], lots of other fun stuff!



Detecting and Characterizing Phases

• From the persistence images of spin systems, we can identify such 
varied phenomena as magnetization, frustration, (anti)vortices: 

• Simplicity of ML architecture: phase classification and extraction 
of order parameters achieved via a simple logistic regression.

• Persistent homology compresses the data sets into their most 
relevant (and interpretable) features, i.e., the grammar of data.

(a) Sample spin configuration, persistence diagram and persistence image for T = 1.90 (top)

and T = 3.50 (bottom).

(b) Average classification of testing data and learned logistic regression coe�cients for the

Ising model. The training data have temperatures in the highlighted regions. In the regression

coe�cients, blue regions are more populated in the low-temperature phase and red regions are

more populated in the high-temperature phase.

Figure 6: Ising model persistence data and phase classification.

a weight log (1 + p), as in Figure 6a. Training of a logistic regression on the persistence images

is conducted only on a subset of samples with extreme temperatures, well within the expected

phases (see the left-hand side of Figure 6b). The classification extrapolates very well to the

intermediate temperatures and gives an estimate of T ⇡ 2.37 for the critical temperature. The

discrepancy from the known critical temperature may be attributed to finite-size e↵ects.

The coe�cients of the trained logistic regression (see the right-hand side of Figure 6b) show

that the low-temperature configurations are identified by their having many small, short-lived

cycles. These may be understood as arising both from 2⇥ 2 blocks of aligned spins (which lead
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(a) Sample spin configuration, persistence diagram and persistence image for T = 0.5 (top)

and T = 4.0 (bottom).

(b) Average classification of testing data and learned logistic regression coe�cients for the

square-ice model. The training data have temperatures in the highlighted regions. In the

regression coe�cients, blue regions are more populated in the low-temperature phase and red

regions are more populated in the high-temperature phase.

Figure 9: Square-ice persistence data and phase classification.

3.3 Square-ice model

The square-ice model places spins, si 2 {�1, 1}, on the edges rather than vertices of a square

lattice and is governed by the local Hamiltonian

HSI =
X

v2⇤

⇣X

i:v

si

⌘2
, (6)

where i : v denotes those spins on edges adjacent to the vertex v. In contrast to the Ising

model there is no spontaneous magnetization at low temperatures. Rather, the ground state
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Ising Model Square Ice Model

[Cole, Loges, GS, ’20]

XY Model



Ising Model
• A system of discrete spins with Hamiltonian:

• Spontaneous magnetization below , 
breaking  symmetry.

• Well-studied (including critical exponents) largely 
in part to Onsager’s exact solution, a good warmup.

• -filtration on locations of spins align with majority 

Tc ≈ 2.27
ℤ2

α

T=2.0

T=3.5

HIs = − ∑
<i,j>

sisj , si ∈ {−1,1}

-filtrations (discrete spins)α
• For discrete spins, put a point at every lattice site agreeing 

with the majority. 

• For this point cloud, perform an -filtration.α



Ising Model: TopologyIsing model topology

• For low-temp phase, 1-cycles are very small, either lattice 
spacing-sized or barely bigger (isolated minority spin) 

• For high-temp phase, there is a distribution of births/deaths 
corresponding to randomly oriented spins.

• For low-temp phase: 1-cycles are very small, either lattice spacing-
sized or barely bigger (isolated minority spin) 

• For high-temp phase: there is a distribution of births/deaths 
corresponding to randomly oriented spins. 



Ising Model: Phase Classification
• For T ∈ {1.00,1.05,...3.50}, generate 1000 configurations. 

• Train logistic regression using 25% of simulations at extreme 
temperatures:

• The trained logistic regression estimates  (lattice effects).

• Logistic regression coefficients identify the magnetization (features at 
lattice scale) as order parameter. 

Tc ≈ 2.37



Ising Model: Critical Exponents
• Persistent homology captures multi-scale behavior near criticality.

• At criticality, the 1-cycle death probability density :

• Using scaling arguments, proportion of clusters of k aligned spins:

DT(d)

Figure 7: Ising model death distributions. The slight horizontal stripes in the figure on the

right (e.g. at death = 25) are symptomatic of the underlying lattice.

to very short-lived 1-cycles) as well as 1-cycles wrapping small groups of isolated spins which

are flipped relative to the large domains of aligned spins: the latter become more and more

important as the temperature is increased. In the high-temperature phase, spins are oriented

randomly, leading to a more uniform distribution of 1-cycle sizes. Using persistent homology

we are able to easily identify the magnetization as the order parameter, as is well known.

3.2.2 Multiscale behavior near criticality

Since persistent homology contains multiscale information about a spin configuration it seems

reasonable that one should be able to probe a model’s approach towards scale-invariance via

critical exponents. Indeed, we are able to see aspects of scale-invariance appearing at criticality

by looking at statistics derived from the persistence diagram. One-dimensional statistics such

as the Betti numbers, births and deaths can be found by counting points in di↵erent regions of

the persistence diagrams. In this way we may compute the 1-cycle death probability density,

DT (d), at each temperature, which quantifies the distribution of feature sizes in the spins. In

Figure 7 we see that deaths are exponentially distributed with a long tail forming at criticality,

indicative of a diverging correlation length and the emergence of power-law behavior.

To be more quantitative, we may fit each DT (d) to a function of the form

DT (d) = Ad
�µ

e
�d/adeath . (4)

Here d is the filtration parameter at the death scale of a cycle, and A is a numerical constant.

There are two critical exponents to be extracted: µ gives the power-law behavior at criticality,

while the correlation area adeath diverges at criticality according to adeath ⇠ |T �Tc|
�⌫death . We

are limited by the IR cuto↵ of the model, namely the finite area of the lattice, but we may

still estimate these exponents. As a consistency check, we ask how these might be related to

previously studied critical exponents. Using scaling arguments, one can show that at criticality

the proportion of clusters of k aligned spins goes as

P(cluster of size k) ⇠ k
�⌧

, (5)

12

DT(d) = Ad−μe−d/adeath , adeath ∼ |T − Tc |−νdeath , μ ≈ 2, νdeath ≈ 1

P(clusters of size k) ∼ k−τ , τ ≈ 2.032 and ξ ∼ |T − Tc |−1



XY Model
• A system of continuous spins with Hamiltonian: 

• Kosterlitz-Thouless transition at 

• At low temp, there are bound vortex-antivortex 
pairs, while at high temp, free vortices proliferate 
and spins are randomly oriented.

• Sublevel filtration: given Morse function , 
consider the sublevel sets :

TXY = 0.892

f : Λ → S1

f −1[−π, ν]

T=0.15

HXY = − ∑
<i,j>

cos(θi − θj)Sublevel filt. (continuous spins)
• Cubical complexes: points, edges, squares, cubes, … 

• Sublevel filtration: given Morse function , consider the 
sublevel sets . Deal with global phase by setting . 

• Topology as network of critical points of .

f : Λ → S1

f −1[−π, ν] ⟨ f⟩ = 0

f
T=1.50



XY Model: TopologyXY model topology

• In low-temp phase, vortex-antivortex pairs manifest as early-born 0-
cycles and late-born 1-cycles. 

• Lattice periodicity: two immortal 1-cycles and one immortal 0-cycle. 

• High-temp phase has more critical points, worth keeping in mind 
when comparing normalized PIs.

• In low-temp phase, vortex-antivortex pairs manifest as early-born 0- 
cycles and late-born 1-cycles. 

• Lattice periodicity: two immortal 1-cycles and one immortal 0-cycle. 
• High-temp phase has more critical points, worth keeping in mind when 

comparing normalized persistence images. 



XY Model: Phase Classification

• Critical temperature estimated as TXY ∼ 0.9 

• Logistic regression coefficients: in low-temperature phase, lots of 
probability density assigned to vortex features, which fall in specific 
regions of persistence images. 
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techniques. In the approximation that the vacuum density is just the volume form on

moduli space, the surface area of the boundary will just be the surface area of the boundary

in moduli space. Taking the region R to be a sphere in moduli space of radius r, we find

A(S1)

V (S1)
∼

√
K

r

so the condition Eq. (5.2) becomes

L >
K

r2
. (5.3)

Thus, if we consider a large enough region, or the entire moduli space in order to find

the total number of vacua, the condition for the asymptotic vacuum counting formulas we

have discussed in this work to hold is L > cK with some order one coefficient. But if we

subdivide the region into subregions which do not satisfy Eq. (5.3), we will find that the

number of vacua in each subregion will show oscillations around this central scaling. In

fact, most regions will contain a smaller number of vacua (like S above), while a few should

have anomalously large numbers (like S′ above), averaging out to Eq. (5.1).

5.1 Flux vacua on rigid Calabi-Yau

As an illustration of this, consider the following toy

-0.5 0.5
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3

Figure 6: Values of τ for rigid CY
flux vacua with Lmax = 150.

problem with K = 4, studied in [1]. The configuration

space is simply the fundamental region of the upper

half plane, parameterized by τ . The flux superpoten-

tials are taken to be

W = Aτ + B

with A = a1 + ia2 and B = b1 + ib2 each taking values

in Z+ iZ. This would be obtained if we considered flux

vacua on a rigid Calabi-Yau, with no complex structure

moduli, b3 = 2, and the periods Π1 = 1 and Π2 = i.

The tadpole condition NηN/2 ≤ L becomes

ImA∗B ≤ L (5.4)

One then has

DW = 0 ↔ τ̄ = −B

A
. (5.5)

Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound Eq. (5.4), taking one representative of each orbit

of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,

0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from

Eq. (5.5) and map it into the fundamental region by an SL(2, Z) transformation. The

resulting plot for L = 150 is shown in figure 6.
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Fig. 5: Distribution of W = 0 vacua in complex structure fundamental domain
for L = 2000 for large values of Im τ .

are given by

max(Im τ) ∼
√

L

2
at Re τ = 0,±0.5 . (4.57)

The next peaks have height Im τ ∼
√

L/4 at Re τ = ±0.25. We also confirm numerically

that the distribution of vacua in the complex structure fundamental domain is in accord

with 1/(Im τ)2.
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Fig. 6: Void structure of distribution of W = 0 vacua in dilaton fundamental
domain for L = 600.
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where the relevant constants µ0, µ1, µ2 and µ3 are given by

µ0 = i(2π)6(a0c0 − c0a0), µ1 = i(2π)6(c0a1 − c1a0 − d1b0),

µ2 = (2π)5|d1|2, µ3 = i(2π)6(c1a1 − a1c1 + d1b1 − b1d1).
(5.4)

One finds the following expression for the Kähler metric

gxx = −µ2

µ0
ln |x|2 +

(

|µ1|2

µ2
0

− 2µ2 + µ3

µ0

)

+O(|x| ln |x|). (5.5)

Then the curvature form is

Rxx =
1

4|x|2
1

(ln |x|+ C)2
, (5.6)

where the constant C is determined to be

C = 1− |µ1|2

2µ0µ2
+

µ3

2µ2
≈ −0.738. (5.7)

In computing Kähler covariantized derivatives with respect to ψ, it is also useful to note

that

∂xKψ = −µ1

µ0
− µ2

µ0
x ln |x|2 +O(x). (5.8)

5.2. Distribution of flux vacua
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Fig. 3: Each point is a vacuum on the x = 1−ψ complex plane. The monte carlo

simulation data is: number of random fluxes N = 5 × 107; random flux interval
f, h ∈ (−100, 100); complex structure ψ space region |x| < 0.04. There are 11249

vacua, but 6306 of them arise at |x| < .00001 and have been removed from the plot
(they would all cluster at the origin).
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• Persistent homology compresses data in an info rich way: 
interpretable observables amendable to statistical analysis.

• TDA for LSS [Biagetti, Cole, GS]: 

• Competitive constraints on local NG at smaller scales; can 
break degeneracies with other cosmological parameters.

• Reproduce previous results on void size function and suggests 
new observables: filament loops formed by dark matter halos.

• Future: other NG shapes and other cosmological parameters.

• TDA for Phase Transitions [Cole, Loges, GS]:

• Quantitative & interpretable order parameters and critical 
exponents obtained by a simple logistic regression. Method 
can be improved further with advanced ML architecture.

• Future: explore in light of persistent homology how ML pipelines 
utilize multiscale info to form internal representations of datasets. 

Summary


