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PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 2: Basics of Machine Learning



• Be able to tell a friend examples of problems where ML can be 
used in collider physics (and physics in general).

• Where can ML be useful in Theoretical Physics?

• How can a physics problem be related to identifying cats and 
dots on images. 

• Remember to start installing the software packages (Exercise 1) 
and get familiarized with them.

Recap of Lecture 1 



• 0th order: ML is concerned with algorithms improving from data 
automatically. 

• Different from physics model fitting to experimental data? Not 
entirely, but there are differences. 

• ML focus on predictions (i.e. accuracy on unseen data) 

• It is an “experimental field”: sometimes not clear why they are 
working (~mathematical precise definition of path integrals).

• As a physicist: It is about finding the right “phenomenological” 
model/ framework to describe data/address the task. 

A Physicist’s Definition of ML



• Dataset D=(X,y) where X=matrix of independent variables 
(input), y=vector of dependent variables (output).

• Model f(x; 𝜃): x → y with parameter 𝜃

• Cost function C(y, f(x; 𝜃)): judges how well the model performs.

• Find model (parameters) which minimizes the cost function.

• Commonly used cost function is the mean squared error, 

Typical ML Problem

C(y, f(X; θ) = ∑
i

(y1 − f(xi; θ))2



• Randomly divide the dataset D into 2 mutually exclusive groups: 
Dtrain and Dtest (known as cross-validation in ML/statistics).

• Minimize the cost function with respect to the training set:

• Evaluate the performance on the test set:

• Define in-sample error and out-of-sample error:

• Typically Eout ≥ Ein .

Recipe

̂θ = arg minθ{C (ytrain, f(Xtrain; θ))}

C (ytest, f(Xtest; ̂θ))

Ein = C (ytrain, f(Xtrain; ̂θ)) , Eout = C (ytest, f(Xtest; ̂θ)))



• In ML we do not know the underlying model or want to check one 
underlying model compared to many experimental setups.

• Model comparison done by performance on Eout.

• Model selection: model that minimizes Eout.

• Model with the lowest Eout does not usually have the lowest Ein.

• Let’s get some intuition for why predicting and fitting are different 
things by trying out the polynomial regression examples in 
Notebook 1 of Mehta et al:

Predicting vs Fitting

https://physics.bu.edu/%7Epankajm/MLnotebooks.html



• Fitting data with polynomials of different order. 

• Dataset is generated by drawing samples from:

•  is some polynomial and  is Gaussian uncorrelated noise:

•  is the noise strength. The larger  is the noisier the data;  
corresponds to the noiseless case.

• Consider different model classes    to model the data and 
make predictions.

f(xi) ηi

σ σ σ = 0

fα(x; θα)

Polynomial Regression

yi = f(xi) + ηi

< ηi > = 0, < ηiηj > = δijσ2



• The model class   encodes the features we choose to 
represent the data.

• Consider three model classes   with  
corresponding to all polynomials of order .

• Different model complexities: each term in the polynomial is a 
feature of the model; increasing the order increases # features.

• More complex model class may give better predictive power, but 
only if Dtrain is large enough to accurately learn these parameters.

fα(x; θα)

fα(x; θα) α = 1,3,10
α

Complexity vs Predictivity



Noiseless Case
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Fig. 1. Fitting versus predicting for noiseless data. Ntrain = 10 points in the range x 2 [0, 1] were generated from a linear model (top) or tenth-order
polynomial (bottom). This data was fit using three model classes: linear models (red), all polynomials of order 3 (yellow), all polynomials of order
10 (green) and used to make prediction on Ntest = 20 new data points with xtest 2 [0, 1.2] (shown on right). Notice that in the absence of noise
(� = 0), given enough data points that fitting and predicting are identical.

10, f10(x; ✓10). Notice that these three model classes contain different number of parameters. Whereas f1(x; ✓1) has only
two parameters (the coefficients of the zeroth and first order terms in the polynomial), f3(x; ✓3) and f10(x; ✓10) have four
and eleven parameters, respectively. This reflects the fact that these three models have different model complexities. If
we think of each term in the polynomial as a ‘‘feature’’ in our model, then increasing the order of the polynomial we fit
increases the number of features. Using a more complex model class may give us better predictive power, but only if we
have a large enough sample size to accurately learn the model parameters associated with these extra features from the
training dataset.

To learn the parameters ✓↵ , we will train our models on a training dataset and then test the effectiveness of the model
on a different dataset, the test dataset. Since we are interested only in gaining intuition, we will simply plot the fitted
polynomials and compare the predictions of our fits for the test data with the true values. As we will see below, the
models that give the best fit to existing data do not necessarily make the best predictions even for a simple task like
polynomial regression.

To illustrate these ideas, we encourage the reader to experiment with the accompanying notebook to generate data
using a linear function f (x) = 2x and a tenth order polynomial f (x) = 2x � 10x5 + 15x10 and ask how the size of
the training dataset Ntrain and the noise strength � affect the ability to make predictions. Obviously, more data and less
noise leads to better predictions. To train the models (linear, third-order, tenth-order), we uniformly sampled the interval
x 2 [0, 1] and constructed Ntrain training examples using (1). We then fit the models on these training samples using
standard least-squares regression. To visualize the performance of the three models, we plot the predictions using the
best fit parameters for a test set where x are drawn uniformly from the interval x 2 [0, 1.2]. Notice that the test interval
is slightly larger than the training interval.

Fig. 1 shows the results of this procedure for the noiseless case, � = 0. Even using a small training set with Ntrain = 10
examples, we find that the model class that generated the data also provides the best fit and the most accurate out-of-
sample predictions. That is, the linear model performs the best for data generated from a linear polynomial (the third and
tenth order polynomials perform similarly), and the tenth order model performs the best for data generated from a tenth
order polynomial. While this may be expected, the results are quite different for larger noise strengths.
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polynomial (bottom). This data was fit using three model classes: linear models (red), all polynomials of order 3 (yellow), all polynomials of order
10 (green) and used to make prediction on Ntest = 20 new data points with xtest 2 [0, 1.2] (shown on right). Notice that in the absence of noise
(� = 0), given enough data points that fitting and predicting are identical.

10, f10(x; ✓10). Notice that these three model classes contain different number of parameters. Whereas f1(x; ✓1) has only
two parameters (the coefficients of the zeroth and first order terms in the polynomial), f3(x; ✓3) and f10(x; ✓10) have four
and eleven parameters, respectively. This reflects the fact that these three models have different model complexities. If
we think of each term in the polynomial as a ‘‘feature’’ in our model, then increasing the order of the polynomial we fit
increases the number of features. Using a more complex model class may give us better predictive power, but only if we
have a large enough sample size to accurately learn the model parameters associated with these extra features from the
training dataset.

To learn the parameters ✓↵ , we will train our models on a training dataset and then test the effectiveness of the model
on a different dataset, the test dataset. Since we are interested only in gaining intuition, we will simply plot the fitted
polynomials and compare the predictions of our fits for the test data with the true values. As we will see below, the
models that give the best fit to existing data do not necessarily make the best predictions even for a simple task like
polynomial regression.

To illustrate these ideas, we encourage the reader to experiment with the accompanying notebook to generate data
using a linear function f (x) = 2x and a tenth order polynomial f (x) = 2x � 10x5 + 15x10 and ask how the size of
the training dataset Ntrain and the noise strength � affect the ability to make predictions. Obviously, more data and less
noise leads to better predictions. To train the models (linear, third-order, tenth-order), we uniformly sampled the interval
x 2 [0, 1] and constructed Ntrain training examples using (1). We then fit the models on these training samples using
standard least-squares regression. To visualize the performance of the three models, we plot the predictions using the
best fit parameters for a test set where x are drawn uniformly from the interval x 2 [0, 1.2]. Notice that the test interval
is slightly larger than the training interval.

Fig. 1 shows the results of this procedure for the noiseless case, � = 0. Even using a small training set with Ntrain = 10
examples, we find that the model class that generated the data also provides the best fit and the most accurate out-of-
sample predictions. That is, the linear model performs the best for data generated from a linear polynomial (the third and
tenth order polynomials perform similarly), and the tenth order model performs the best for data generated from a tenth
order polynomial. While this may be expected, the results are quite different for larger noise strengths.

f(x) = 2x, x ∈ [0,1]

f(x) = 2x − 10x5 + 15x10, x ∈ [0,1]
In the absence of noise, fitting and predicting are 
identical, provided model has enough flexibility.



Noisy Case
f(x) = 2x, x ∈ [0,1]

f(x) = 2x − 10x5 + 15x10, x ∈ [0,1]
In the presence of noise, models with less  

complexity can exhibit improved predictive power.
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Fig. 2. Fitting versus predicting for noisy data. Ntrain = 100 noisy data points (� = 1) in the range x 2 [0, 1] were generated from a linear model
(top) or tenth-order polynomial (bottom). This data was fit using three model classes: linear models (red), all polynomials of order 3 (yellow), all
polynomials of order 10 (green) and used to make prediction on Ntest = 20 new data points with xtest 2 [0, 1.2](shown on right). Notice that even
when the data was generated using a tenth order polynomial, the linear and third order polynomials give better out-of-sample predictions, especially
beyond the x range over which the model was trained.

Fig. 2 shows the results of the same procedure for noisy data, � = 1, and a larger training set, Ntrain = 100. As in the
noiseless case, the tenth order model provides the best fit to the data (i.e., the lowest Ein). In contrast, the tenth order
model now makes the worst out-of-sample predictions (i.e., the highest Eout). Remarkably, this is true even if the data
were generated using a tenth order polynomial.

At small sample sizes, noise can create fluctuations in the data that look like genuine patterns. Simple models (like a
linear function) cannot represent complicated patterns in the data, so they are forced to ignore the fluctuations and to
focus on the larger trends. Complex models with many parameters, such as the tenth order polynomial in our example,
can capture both the global trends and noise-generated patterns at the same time. In this case, the model can be tricked
into thinking that the noise encodes real information. This problem is called ‘‘overfitting’’ and leads to a steep drop-off in
predictive performance.

We can guard against overfitting in two ways: we can use less expressive models with fewer parameters, or we can
collect more data so that the likelihood that the noise appears patterned decreases. Indeed, when we increase the size
of the training dataset by two orders of magnitude to Ntrain = 104 (see Fig. 3) the tenth order polynomial clearly gives
both the best fits and the most predictive power over the entire training range x 2 [0, 1], and even slightly beyond to
approximately x ⇡ 1.05. This is our first experience with what is known as the bias–variance tradeoff, c.f. Section 3.2.
When the amount of training data is limited as it is when Ntrain = 100, one can often get better predictive performance
by using a less expressive model (e.g., a lower order polynomial) rather than the more complex model (e.g., the tenth-
order polynomial). The simpler model has more ‘‘bias’’ but is less dependent on the particular realization of the training
dataset, i.e. less ‘‘variance’’. Finally we note that even with ten thousand data points, the model’s performance quickly
degrades beyond the original training data range. This demonstrates the difficulty of predicting beyond the training data
we mentioned earlier.

This simple example highlights why ML is so difficult and holds some universal lessons that we will encounter
repeatedly in this review:
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• The 10th order model makes the worst out-of-sample predictions, 
even if the data was generated by a 10th order polynomial.

• At small sample sizes, noise can create fluctuations in the data 
that look like genuine pattern. 

• Simple models (e.g., linear function) are forced to ignore the 
fluctuations and focus on the larger trend.

• Complex models can capture both the global trends and noise, 
and can be tricked into “overfitting”.

• Can avoid overfitting by 1) using less expressive models 
(regularization, more later) or 2) increasing the size of training set. 

Overfitting



Larger Training Set
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Fig. 3. Fitting versus predicting for noisy data. Ntrain = 104 noisy data points (� = 1) in the range x 2 [0, 1] were generated from a tenth-order
polynomial. This data was fit using three model classes: linear models (red), all polynomials of order 3 (yellow), all polynomials of order 10 (green)
and used to make prediction on Ntest = 100 new data points with xtest 2 [0, 1.2](shown on right). The tenth order polynomial gives good predictions
but the model’s predictive power quickly degrades beyond the training data range.

• Fitting is not predicting. Fitting existing data well is fundamentally different from making predictions about new
data.

• Using a complex model can result in overfitting. Increasing a model’s complexity (i.e number of fitting parameters)
will usually yield better results on the training data. However when the training data size is small and the data are
noisy, this results in overfitting and can substantially degrade the predictive performance of the model.

• For complex datasets and small training sets, simple models can be better at prediction than complex models due
to the bias–variance tradeoff. It takes less data to train a simple model than a complex one. Therefore, even though
the correct model is guaranteed to have better predictive performance for an infinite amount of training data (less
bias), the training errors stemming from finite-size sampling (variance) can cause simpler models to outperform the
more complex model when sampling is limited.

• It is difficult to generalize beyond the situations encountered in the training dataset.

3. Basics of statistical learning theory

In this section, we briefly summarize and discuss the sense in which learning is possible, with a focus on supervised
learning. We begin with an unknown function y = f (x) and fix a hypothesis set H consisting of all functions we are willing
to consider, defined also on the domain of f . This set may be uncountably infinite (e.g. if there are real-valued parameters
to fit). The choice of which functions to include in H usually depends on our intuition about the problem of interest. The
function f (x) produces a set of pairs (xi, yi), i = 1 . . .N , which serve as the observable data. Our goal is to select a function
from the hypothesis set h 2 H that approximates f (x) as best as possible, namely, we would like to find h 2 H such that
h ⇡ f in some strict mathematical sense which we specify below. If this is possible, we say that we learned f (x). But if the
function f (x) can, in principle, take any value on unobserved inputs, how is it possible to learn in any meaningful sense?

The answer is that learning is possible in the restricted sense that the fitted model will probably perform approximately
as well on new data as it did on the training data. Once an appropriate error function E is chosen for the problem
under consideration (e.g. sum of squared errors in linear regression), we can define two distinct performance measures
of interest. The in-sample error, Ein, and the out-of-sample or generalization error, Eout. Recall from Section 2 that both
metrics are required due to the distinction between fitting and predicting.

This raises a natural question: Can we say something general about the relationship between Ein and Eout? Surprisingly, the
answer is ‘Yes’. We can in fact say quite a bit. This is the domain of statistical learning theory, and we give a brief overview
of the main results in this section. Our goal is to briefly introduce some of the major ideas from statistical learning theory
because of the important role they have played in shaping how we think about machine learning. However, this is a
highly technical and theoretical field, so we will just skim over some introductory topics. A more thorough introduction
to statistical learning theory can be found in the introductory textbook by Abu Mostafa (Abu-Mostafa et al., 2012).

3.1. Three simple schematics that summarize the basic intuitions from Statistical Learning Theory

The basic intuitions of statistical learning can be summarized in three simple schematics. The first schematic, shown
in Fig. 4, shows the typical out-of-sample error, Eout, and in-sample error, Ein, as a function of the amount of training data.
In making this graph, we have assumed that the true data is drawn from a sufficiently complicated distribution, so that
we cannot exactly learn the function f (x). Hence, after a quick initial drop (not shown in figure), the in-sample error will
increase with the number of data points, because our models are not powerful enough to learn the true function we are

• With a larger training set, the 10th order polynomial gives both the 
best fits and the most predictive power over the entire training 
range  and even slightly beyond to .

• An illustration of bias-variance tradeoff: simple models have 
more “bias” but less “variance”.

x ∈ [0,1] ≈ 1.05



• Fitting (existing data) is not predicting (unseen data).

• Using a complex model can result in overfitting when the training 
data size is small and the data is noisy. 

• For complex datasets and small training sets, simple models can 
be better at prediction due to the bias-variance trade-off.

• Difficult to generalize beyond the situations (data range) 
encountered in the training set. 

Why is ML difficult?



Basics of Statistical Learning



• Hypothesis set (contains all possible models we consider).

• The goal of Statistical Learning is to determine a function from 
the hypothesis set that approximates f(x) as best as possible.

• Intuitively, we want to learn a function that performs probably as 
well on new data as on training data. 

• What is the relation between Ein and Eout ?

• Assumption: cannot exactly learn the target function f(x).

Statistical Learning



Bias-Variance Decomposition
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Fig. 4. Schematic of typical in-sample and out-of-sample error as a function of training set size. The typical in-sample or training error, Ein, out-
of-sample or generalization error, Eout, bias, variance, and difference of errors as a function of the number of training data points. The schematic
assumes that the number of data points is large (in particular, the schematic does not show the initial drop in Ein for small amounts of data), and
that our model cannot exactly fit the true function f (x).

seeking to approximate. In contrast, the out-of-sample error will decrease with the number of data points. As the number
of data points gets large, the sampling noise decreases and the training dataset becomes more representative of the true
distribution from which the data is drawn. For this reason, in the infinite data limit, the in-sample and out-of-sample
errors must approach the same value, which is called the ‘‘bias’’ of our model.

The bias represents the best our model could do if we had an infinite amount of training data to beat down sampling
noise. The bias is a property of the kind of functions, or model class, we are using to approximate f (x). In general, the
more complex the model class we use, the smaller the bias. However, we do not generally have an infinite amount of
data. For this reason, to get best predictive power it is better to minimize the out-of-sample error, Eout, rather than the
bias. As shown in Fig. 4, Eout can be naturally decomposed into a bias, which measures how well we can hypothetically
do in the infinite data limit, and a variance, which measures the typical errors introduced in training our model due to
sampling noise from having a finite training set.

The final quantity shown in Fig. 4 is the difference between the generalization and training error. It measures how
well our in-sample error reflects the out-of-sample error, and measures how much worse we would do on a new dataset
compared to our training data. For this reason, the difference between these errors is precisely the quantity that measures
the difference between fitting and predicting. Models with a large difference between the in-sample and out-of-sample
errors are said to ‘‘overfit’’ the data. One of the lessons of statistical learning theory is that it is not enough to simply
minimize the training error, because the out-of-sample error can still be large. As we will see in our discussion of
regression in Section 6, this insight naturally leads to the idea of ‘‘regularization’’.

The second schematic, shown in Fig. 5, shows the out-of-sample, or test, error Eout as a function of ‘‘model complexity’’.
Model complexity is a very subtle idea and defining it precisely is one of the great achievements of statistical learning
theory. In many cases, model complexity is related to the number of parameters we are using to approximate the true
function f (x).1 In the example of polynomial regression discussed above, higher-order polynomials are more complex
than the linear model. If we consider a training dataset of a fixed size, Eout will be a non-monotonic function of the model
complexity, and is generally minimized for models with intermediate complexity. The underlying reason for this is that,
even though using a more complicated model always reduces the bias, at some point the model becomes too complex
for the amount of training data and the generalization error becomes large due to high variance. Thus, to minimize Eout
and maximize our predictive power, it may be more suitable to use a more biased model with small variance than a
less-biased model with large variance. This important concept is commonly called the bias–variance tradeoff and gets at
the heart of why machine learning is difficult.

Another way to visualize the bias–variance tradeoff is shown in Fig. 6. In this figure, we imagine training a complex
model (shown in green) and a simpler model (shown in black) many times on different training sets of a fixed size N .
Due to the sampling noise from having finite size datasets, the learned models will differ for each choice of training sets.
In general, more complex models need a larger amount of training data. For this reason, the fluctuations in the learned
models (variance) will be much larger for the more complex model than the simpler model. However, if we consider

1 There are, of course, exceptions. One neat example in the context of one-dimensional regression in given in (Friedman et al., 2001), Figure 7.5.
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Fig. 4. Schematic of typical in-sample and out-of-sample error as a function of training set size. The typical in-sample or training error, Ein, out-
of-sample or generalization error, Eout, bias, variance, and difference of errors as a function of the number of training data points. The schematic
assumes that the number of data points is large (in particular, the schematic does not show the initial drop in Ein for small amounts of data), and
that our model cannot exactly fit the true function f (x).

seeking to approximate. In contrast, the out-of-sample error will decrease with the number of data points. As the number
of data points gets large, the sampling noise decreases and the training dataset becomes more representative of the true
distribution from which the data is drawn. For this reason, in the infinite data limit, the in-sample and out-of-sample
errors must approach the same value, which is called the ‘‘bias’’ of our model.

The bias represents the best our model could do if we had an infinite amount of training data to beat down sampling
noise. The bias is a property of the kind of functions, or model class, we are using to approximate f (x). In general, the
more complex the model class we use, the smaller the bias. However, we do not generally have an infinite amount of
data. For this reason, to get best predictive power it is better to minimize the out-of-sample error, Eout, rather than the
bias. As shown in Fig. 4, Eout can be naturally decomposed into a bias, which measures how well we can hypothetically
do in the infinite data limit, and a variance, which measures the typical errors introduced in training our model due to
sampling noise from having a finite training set.

The final quantity shown in Fig. 4 is the difference between the generalization and training error. It measures how
well our in-sample error reflects the out-of-sample error, and measures how much worse we would do on a new dataset
compared to our training data. For this reason, the difference between these errors is precisely the quantity that measures
the difference between fitting and predicting. Models with a large difference between the in-sample and out-of-sample
errors are said to ‘‘overfit’’ the data. One of the lessons of statistical learning theory is that it is not enough to simply
minimize the training error, because the out-of-sample error can still be large. As we will see in our discussion of
regression in Section 6, this insight naturally leads to the idea of ‘‘regularization’’.

The second schematic, shown in Fig. 5, shows the out-of-sample, or test, error Eout as a function of ‘‘model complexity’’.
Model complexity is a very subtle idea and defining it precisely is one of the great achievements of statistical learning
theory. In many cases, model complexity is related to the number of parameters we are using to approximate the true
function f (x).1 In the example of polynomial regression discussed above, higher-order polynomials are more complex
than the linear model. If we consider a training dataset of a fixed size, Eout will be a non-monotonic function of the model
complexity, and is generally minimized for models with intermediate complexity. The underlying reason for this is that,
even though using a more complicated model always reduces the bias, at some point the model becomes too complex
for the amount of training data and the generalization error becomes large due to high variance. Thus, to minimize Eout
and maximize our predictive power, it may be more suitable to use a more biased model with small variance than a
less-biased model with large variance. This important concept is commonly called the bias–variance tradeoff and gets at
the heart of why machine learning is difficult.

Another way to visualize the bias–variance tradeoff is shown in Fig. 6. In this figure, we imagine training a complex
model (shown in green) and a simpler model (shown in black) many times on different training sets of a fixed size N .
Due to the sampling noise from having finite size datasets, the learned models will differ for each choice of training sets.
In general, more complex models need a larger amount of training data. For this reason, the fluctuations in the learned
models (variance) will be much larger for the more complex model than the simpler model. However, if we consider

1 There are, of course, exceptions. One neat example in the context of one-dimensional regression in given in (Friedman et al., 2001), Figure 7.5.
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Fig. 4. Schematic of typical in-sample and out-of-sample error as a function of training set size. The typical in-sample or training error, Ein, out-
of-sample or generalization error, Eout, bias, variance, and difference of errors as a function of the number of training data points. The schematic
assumes that the number of data points is large (in particular, the schematic does not show the initial drop in Ein for small amounts of data), and
that our model cannot exactly fit the true function f (x).

seeking to approximate. In contrast, the out-of-sample error will decrease with the number of data points. As the number
of data points gets large, the sampling noise decreases and the training dataset becomes more representative of the true
distribution from which the data is drawn. For this reason, in the infinite data limit, the in-sample and out-of-sample
errors must approach the same value, which is called the ‘‘bias’’ of our model.

The bias represents the best our model could do if we had an infinite amount of training data to beat down sampling
noise. The bias is a property of the kind of functions, or model class, we are using to approximate f (x). In general, the
more complex the model class we use, the smaller the bias. However, we do not generally have an infinite amount of
data. For this reason, to get best predictive power it is better to minimize the out-of-sample error, Eout, rather than the
bias. As shown in Fig. 4, Eout can be naturally decomposed into a bias, which measures how well we can hypothetically
do in the infinite data limit, and a variance, which measures the typical errors introduced in training our model due to
sampling noise from having a finite training set.

The final quantity shown in Fig. 4 is the difference between the generalization and training error. It measures how
well our in-sample error reflects the out-of-sample error, and measures how much worse we would do on a new dataset
compared to our training data. For this reason, the difference between these errors is precisely the quantity that measures
the difference between fitting and predicting. Models with a large difference between the in-sample and out-of-sample
errors are said to ‘‘overfit’’ the data. One of the lessons of statistical learning theory is that it is not enough to simply
minimize the training error, because the out-of-sample error can still be large. As we will see in our discussion of
regression in Section 6, this insight naturally leads to the idea of ‘‘regularization’’.

The second schematic, shown in Fig. 5, shows the out-of-sample, or test, error Eout as a function of ‘‘model complexity’’.
Model complexity is a very subtle idea and defining it precisely is one of the great achievements of statistical learning
theory. In many cases, model complexity is related to the number of parameters we are using to approximate the true
function f (x).1 In the example of polynomial regression discussed above, higher-order polynomials are more complex
than the linear model. If we consider a training dataset of a fixed size, Eout will be a non-monotonic function of the model
complexity, and is generally minimized for models with intermediate complexity. The underlying reason for this is that,
even though using a more complicated model always reduces the bias, at some point the model becomes too complex
for the amount of training data and the generalization error becomes large due to high variance. Thus, to minimize Eout
and maximize our predictive power, it may be more suitable to use a more biased model with small variance than a
less-biased model with large variance. This important concept is commonly called the bias–variance tradeoff and gets at
the heart of why machine learning is difficult.

Another way to visualize the bias–variance tradeoff is shown in Fig. 6. In this figure, we imagine training a complex
model (shown in green) and a simpler model (shown in black) many times on different training sets of a fixed size N .
Due to the sampling noise from having finite size datasets, the learned models will differ for each choice of training sets.
In general, more complex models need a larger amount of training data. For this reason, the fluctuations in the learned
models (variance) will be much larger for the more complex model than the simpler model. However, if we consider

1 There are, of course, exceptions. One neat example in the context of one-dimensional regression in given in (Friedman et al., 2001), Figure 7.5.
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Fig. 5. Bias–Variance tradeoff and model complexity. This schematic shows the typical out-of-sample error Eout as function of the model complexity
for a training dataset of fixed size. Notice how the bias always decreases with model complexity, but the variance, i.e. fluctuation in performance due
to finite size sampling effects, increases with model complexity. Thus, optimal performance is achieved at intermediate levels of model complexity.

Fig. 6. Bias–Variance tradeoff. Another useful depiction of the bias–variance tradeoff is to think about how Eout varies as we consider different
training datasets of a fixed size. A more complex model (green) will exhibit larger fluctuations (variance) due to finite size sampling effects than
the simpler model (black). However, the average over all the trained models (bias) is closer to the true model for the more complex model.

the asymptotic performance as we increase the size of the training set (the bias), it is clear that the complex model
will eventually perform better than the simpler model. Thus, depending on the amount of training data, it may be more
favorable to use a less complex, high-bias model to make predictions.

3.2. Bias–Variance Decomposition

In this section, we dig further into the central principle that underlies much of machine learning: the bias–variance
tradeoff. We will discuss the bias–variance tradeoff in the context of continuous predictions such as regression. However,
many of the intuitions and ideas discussed here also carry over to classification tasks. Consider a dataset D = (X, y)
consisting of the N pairs of independent and dependent variables. Let us assume that the true data is generated from a
noisy model

y = f (x) + ✏ (2)

where ✏ is normally distributed with mean zero and standard deviation �✏ .
Assume that we have a statistical procedure (e.g. least-squares regression) for forming a predictor f (x; ✓̂) that gives

the prediction of our model for a new data point x. This estimator is chosen by minimizing a cost function which we take
to be the squared error

C(y, f (X; ✓)) =

X

i

(yi � f (xi; ✓))2. (3)

Therefore, the estimates for the parameters,

✓̂D = argmin
✓

C(y, f (X; ✓)). (4)

Simple models have high-bias while complex models have high variance. 
Models with intermediate complexity have the best performance.
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will eventually perform better than the simpler model. Thus, depending on the amount of training data, it may be more
favorable to use a less complex, high-bias model to make predictions.

3.2. Bias–Variance Decomposition

In this section, we dig further into the central principle that underlies much of machine learning: the bias–variance
tradeoff. We will discuss the bias–variance tradeoff in the context of continuous predictions such as regression. However,
many of the intuitions and ideas discussed here also carry over to classification tasks. Consider a dataset D = (X, y)
consisting of the N pairs of independent and dependent variables. Let us assume that the true data is generated from a
noisy model

y = f (x) + ✏ (2)

where ✏ is normally distributed with mean zero and standard deviation �✏ .
Assume that we have a statistical procedure (e.g. least-squares regression) for forming a predictor f (x; ✓̂) that gives

the prediction of our model for a new data point x. This estimator is chosen by minimizing a cost function which we take
to be the squared error

C(y, f (X; ✓)) =
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Therefore, the estimates for the parameters,

✓̂D = argmin
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The average over all the trained complex (i.e., high variance, low-bias) 
models is closer to the true model.



• Dataset D={(X,y)} obtained by drawing N samples from the true 
data distribution.

• True data is generated by a noisy model:  where  is 
normally distributed with mean zero and standard deviation .

• Cost function:

• The estimate for the parameters:

is a function of the dataset D. Thus we obtain a different error for 
each dataset. We take expectation value over all these datasets 
and over noise, and denote that as .

y = f(x) + ϵ ϵ
σϵ

𝔼D,ϵ

Bias-Variance Decomposition

C(y, f(x, θ)) =
N

∑
i=1

(yi − f(xi; θ))2

̂θD = arg minθC (y, f(X; θ))



• The expected generalization error:

• Further simplifying the last term:
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are a function of the dataset, D. We would obtain a different error C(y j, f (X j; ✓̂Dj )) for each dataset Dj = (y j,X j) in a
universe of possible datasets obtained by drawing N samples from the true data distribution. We denote an expectation
value over all of these datasets as ED .

We would also like to average over different instances of the ‘‘noise’’ ✏ and we denote the expectation value over the
noise by E✏ . Thus, we can decompose the expected generalization error as

ED,✏[C(y, f (X; ✓̂D))] = ED,✏

"
X

i

(yi � f (xi; ✓̂D))2
#

= ED,✏

"
X

i

(yi � f (xi) + f (xi) � f (xi; ✓̂D))2
#

=

X

i

E✏[(yi � f (xi))2] + ED,✏[(f (xi) � f (xi; ✓̂D))2] + 2E✏[yi � f (xi)]ED[f (xi) � f (xi; ✓̂D)]

=

X

i

� 2
✏ + ED[(f (xi) � f (xi; ✓̂D))2], (5)

where in the last line we used the fact that our noise has zero mean and variance � 2
✏ and the sum over i applies to all

terms. It is also helpful to further decompose the second term as follows:

ED[(f (xi) � f (xi; ✓̂D))2] = ED[{f (xi) � ED[f (xi; ✓̂D)] + ED[f (xi; ✓̂D)] � f (xi; ✓̂D)}2]
= ED[{f (xi) � ED[f (xi; ✓̂D)]}2] + ED[{f (xi; ✓̂D) � ED[f (xi; ✓̂D)]}2]

+ 2ED[{f (xi) � ED[f (xi; ✓̂D)]}{f (xi; ✓̂D) � ED[f (xi; ✓̂D)]}]
= (f (xi) � ED[f (xi; ✓̂D)])2 + ED[{f (xi; ✓̂D) � ED[f (xi; ✓̂D)]}2]. (6)

The first term is called the bias

Bias2 =

X

i

(f (xi) � ED[f (xi; ✓̂D)])2 (7)

and measures the deviation of the expectation value of our estimator (i.e. the asymptotic value of our estimator in the
infinite data limit) from the true value. The second term is called the variance

Var =

X

i

ED[(f (xi; ✓̂D) � ED[f (xi; ✓̂D)])2], (8)

and measures how much our estimator fluctuates due to finite-sample effects. Combining these expressions, we see that
the expected out-of-sample error, Eout := ED,✏[C(y, f (X; ✓̂D))], can be decomposed as

Eout = Bias2 + Var + Noise, (9)

with Noise =
P

i �
2
✏ .

The bias–variance tradeoff summarizes the fundamental tension in machine learning, particularly supervised learning,
between the complexity of a model and the amount of training data needed to train it. Since data is often limited, in
practice it is often useful to use a less-complex model with higher bias – a model whose asymptotic performance is worse
than another model – because it is easier to train and less sensitive to sampling noise arising from having a finite-sized
training dataset (smaller variance). This is the basic intuition behind the schematics in Figs. 4–6.

4. Gradient descent and its generalizations

Almost every problem in ML and data science starts with the same ingredients: a dataset X , a model g(✓), which is a
function of the parameters ✓, and a cost function C(X, g(✓)) that allows us to judge how well the model g(✓) explains the
observations X . The model is fit by finding the values of ✓ that minimize the cost function.

In this section, we discuss one of the most powerful and widely used classes of methods for performing this
minimization — gradient descent and its generalizations. The basic idea behind these methods is straightforward:
iteratively adjust the parameters ✓ in the direction where the gradient of the cost function is large and negative. In this
way, the training procedure ensures the parameters flow towards a local minimum of the cost function. However, in
practice gradient descent is full of surprises and a series of ingenious tricks have been developed by the optimization and
machine learning communities to improve the performance of these algorithms.

The underlying reason why training a machine learning algorithm is difficult is that the cost functions we wish to
optimize are usually complicated, rugged, non-convex functions in a high-dimensional space with many local minima.
To make things even more difficult, we almost never have access to the true function we wish to minimize: instead, we
must estimate this function directly from data. In modern applications, both the size of the dataset and the number of
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are a function of the dataset, D. We would obtain a different error C(y j, f (X j; ✓̂Dj )) for each dataset Dj = (y j,X j) in a
universe of possible datasets obtained by drawing N samples from the true data distribution. We denote an expectation
value over all of these datasets as ED .

We would also like to average over different instances of the ‘‘noise’’ ✏ and we denote the expectation value over the
noise by E✏ . Thus, we can decompose the expected generalization error as
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terms. It is also helpful to further decompose the second term as follows:
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= (f (xi) � ED[f (xi; ✓̂D)])2 + ED[{f (xi; ✓̂D) � ED[f (xi; ✓̂D)]}2]. (6)

The first term is called the bias

Bias2 =

X
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(f (xi) � ED[f (xi; ✓̂D)])2 (7)

and measures the deviation of the expectation value of our estimator (i.e. the asymptotic value of our estimator in the
infinite data limit) from the true value. The second term is called the variance

Var =

X
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ED[(f (xi; ✓̂D) � ED[f (xi; ✓̂D)])2], (8)

and measures how much our estimator fluctuates due to finite-sample effects. Combining these expressions, we see that
the expected out-of-sample error, Eout := ED,✏[C(y, f (X; ✓̂D))], can be decomposed as

Eout = Bias2 + Var + Noise, (9)

with Noise =
P
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✏ .

The bias–variance tradeoff summarizes the fundamental tension in machine learning, particularly supervised learning,
between the complexity of a model and the amount of training data needed to train it. Since data is often limited, in
practice it is often useful to use a less-complex model with higher bias – a model whose asymptotic performance is worse
than another model – because it is easier to train and less sensitive to sampling noise arising from having a finite-sized
training dataset (smaller variance). This is the basic intuition behind the schematics in Figs. 4–6.

4. Gradient descent and its generalizations

Almost every problem in ML and data science starts with the same ingredients: a dataset X , a model g(✓), which is a
function of the parameters ✓, and a cost function C(X, g(✓)) that allows us to judge how well the model g(✓) explains the
observations X . The model is fit by finding the values of ✓ that minimize the cost function.

In this section, we discuss one of the most powerful and widely used classes of methods for performing this
minimization — gradient descent and its generalizations. The basic idea behind these methods is straightforward:
iteratively adjust the parameters ✓ in the direction where the gradient of the cost function is large and negative. In this
way, the training procedure ensures the parameters flow towards a local minimum of the cost function. However, in
practice gradient descent is full of surprises and a series of ingenious tricks have been developed by the optimization and
machine learning communities to improve the performance of these algorithms.

The underlying reason why training a machine learning algorithm is difficult is that the cost functions we wish to
optimize are usually complicated, rugged, non-convex functions in a high-dimensional space with many local minima.
To make things even more difficult, we almost never have access to the true function we wish to minimize: instead, we
must estimate this function directly from data. In modern applications, both the size of the dataset and the number of

— 
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are a function of the dataset, D. We would obtain a different error C(y j, f (X j; ✓̂Dj )) for each dataset Dj = (y j,X j) in a
universe of possible datasets obtained by drawing N samples from the true data distribution. We denote an expectation
value over all of these datasets as ED .

We would also like to average over different instances of the ‘‘noise’’ ✏ and we denote the expectation value over the
noise by E✏ . Thus, we can decompose the expected generalization error as
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where in the last line we used the fact that our noise has zero mean and variance � 2
✏ and the sum over i applies to all

terms. It is also helpful to further decompose the second term as follows:

ED[(f (xi) � f (xi; ✓̂D))2] = ED[{f (xi) � ED[f (xi; ✓̂D)] + ED[f (xi; ✓̂D)] � f (xi; ✓̂D)}2]
= ED[{f (xi) � ED[f (xi; ✓̂D)]}2] + ED[{f (xi; ✓̂D) � ED[f (xi; ✓̂D)]}2]

+ 2ED[{f (xi) � ED[f (xi; ✓̂D)]}{f (xi; ✓̂D) � ED[f (xi; ✓̂D)]}]
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The first term is called the bias

Bias2 =
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and measures the deviation of the expectation value of our estimator (i.e. the asymptotic value of our estimator in the
infinite data limit) from the true value. The second term is called the variance
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and measures how much our estimator fluctuates due to finite-sample effects. Combining these expressions, we see that
the expected out-of-sample error, Eout := ED,✏[C(y, f (X; ✓̂D))], can be decomposed as

Eout = Bias2 + Var + Noise, (9)

with Noise =
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The bias–variance tradeoff summarizes the fundamental tension in machine learning, particularly supervised learning,
between the complexity of a model and the amount of training data needed to train it. Since data is often limited, in
practice it is often useful to use a less-complex model with higher bias – a model whose asymptotic performance is worse
than another model – because it is easier to train and less sensitive to sampling noise arising from having a finite-sized
training dataset (smaller variance). This is the basic intuition behind the schematics in Figs. 4–6.

4. Gradient descent and its generalizations

Almost every problem in ML and data science starts with the same ingredients: a dataset X , a model g(✓), which is a
function of the parameters ✓, and a cost function C(X, g(✓)) that allows us to judge how well the model g(✓) explains the
observations X . The model is fit by finding the values of ✓ that minimize the cost function.

In this section, we discuss one of the most powerful and widely used classes of methods for performing this
minimization — gradient descent and its generalizations. The basic idea behind these methods is straightforward:
iteratively adjust the parameters ✓ in the direction where the gradient of the cost function is large and negative. In this
way, the training procedure ensures the parameters flow towards a local minimum of the cost function. However, in
practice gradient descent is full of surprises and a series of ingenious tricks have been developed by the optimization and
machine learning communities to improve the performance of these algorithms.

The underlying reason why training a machine learning algorithm is difficult is that the cost functions we wish to
optimize are usually complicated, rugged, non-convex functions in a high-dimensional space with many local minima.
To make things even more difficult, we almost never have access to the true function we wish to minimize: instead, we
must estimate this function directly from data. In modern applications, both the size of the dataset and the number of
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are a function of the dataset, D. We would obtain a different error C(y j, f (X j; ✓̂Dj )) for each dataset Dj = (y j,X j) in a
universe of possible datasets obtained by drawing N samples from the true data distribution. We denote an expectation
value over all of these datasets as ED .

We would also like to average over different instances of the ‘‘noise’’ ✏ and we denote the expectation value over the
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and measures the deviation of the expectation value of our estimator (i.e. the asymptotic value of our estimator in the
infinite data limit) from the true value. The second term is called the variance
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the expected out-of-sample error, Eout := ED,✏[C(y, f (X; ✓̂D))], can be decomposed as
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The bias–variance tradeoff summarizes the fundamental tension in machine learning, particularly supervised learning,
between the complexity of a model and the amount of training data needed to train it. Since data is often limited, in
practice it is often useful to use a less-complex model with higher bias – a model whose asymptotic performance is worse
than another model – because it is easier to train and less sensitive to sampling noise arising from having a finite-sized
training dataset (smaller variance). This is the basic intuition behind the schematics in Figs. 4–6.

4. Gradient descent and its generalizations

Almost every problem in ML and data science starts with the same ingredients: a dataset X , a model g(✓), which is a
function of the parameters ✓, and a cost function C(X, g(✓)) that allows us to judge how well the model g(✓) explains the
observations X . The model is fit by finding the values of ✓ that minimize the cost function.

In this section, we discuss one of the most powerful and widely used classes of methods for performing this
minimization — gradient descent and its generalizations. The basic idea behind these methods is straightforward:
iteratively adjust the parameters ✓ in the direction where the gradient of the cost function is large and negative. In this
way, the training procedure ensures the parameters flow towards a local minimum of the cost function. However, in
practice gradient descent is full of surprises and a series of ingenious tricks have been developed by the optimization and
machine learning communities to improve the performance of these algorithms.

The underlying reason why training a machine learning algorithm is difficult is that the cost functions we wish to
optimize are usually complicated, rugged, non-convex functions in a high-dimensional space with many local minima.
To make things even more difficult, we almost never have access to the true function we wish to minimize: instead, we
must estimate this function directly from data. In modern applications, both the size of the dataset and the number of



• Typical problem in ML.

• Splitting data into training set and test set.

• In-sample error  may not equal out-of-sample error 

• Bias-variance trade-off:

• Example: polynomial regression.

Ein Eout

Summary

< Eout > = Bias2 + Variance + Noise


