PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

age: Fermilab/CERN)

Lecture 2: Basics of Machine Learning

Recap of Lecture 1

Be able to tell a friend examples of problems where ML can be
used in collider physics (and physics in general).

Where can ML be useful in Theoretical Physics?

How can a physics problem be related to identifying cats and
dots on images.

Remember to start installing the software packages (Exercise 1)
and get familiarized with them.

A Physicist’s Definition of ML

Oth order: ML is concerned with algorithms improving from data
automatically.

Different from physics model fitting to experimental data”? Not
entirely, but there are differences.

ML focus on predictions (i.e. accuracy on unseen data)

It is an “experimental field”: sometimes not clear why they are
working (~mathematical precise definition of path integrals).

As a physicist: It is about finding the right “phenomenological”
model/ framework to describe data/address the task.

Typical ML Problem

Dataset D=(X,y) where X=matrix of independent variables
(input), y=vector of dependent variables (output).

Model f(x; 8): x = y with parameter 0
Cost function C(y, f(x; 8)): judges how well the model performs.

Find model (parameters) which minimizes the cost function.

Commonly used cost function is the ,

C(y. fX:0) = Y (m —f(x:6))°

l

Recipe

Randomly divide the dataset D into 2 mutually exclusive groups:
Dirain and Diest (Known as cross-validation in ML/statistics).

Minimize the cost function with respect to the training set:
é = arg ming{ C (ytrain’ f (Xtrain; 9)> }

Evaluate the performance on the test set:

C (ytest’ S Xiests é))

Define in-sample error and out-of-sample error:

Ein =C (ytrain’ f(Xtrain; é)> > Eout =C <Ytest’ f(Xtest; é»)

Typicaly £, . > E. .

Predicting vs Fitting

In ML we do not know the underlying model or want to check one
underlying model compared to many experimental setups.

Model comparison done by performance on Eout.
Model selection: model that minimizes Eout.
Model with the lowest Eout does not usually have the lowest Ein.

Let’s get some intuition for why predicting and fitting are different
things by trying out the polynomial regression examples in
Notebook 1 of Mehta et al:

https://physics.bu.edu/%7Epankajm/MLnotebooks.html

Polynomial Regression

Fitting data with polynomials of different order.

Dataset is generated by drawing samples from:

y; = f(x) +n;
f(x;) is some polynomial and #, is Gaussian uncorrelated noise:

o is the noise strength. The larger o is the noisier the data; c = 0
corresponds to the noiseless case.

Consider different model classes f (x;6,) to model the data and
make predictions.

Complexity vs Predictivity

The model class f,(x; 6,) encodes the features we choose to
represent the data.

Consider three model classes |, (x; 6,) witha = 1,3,10
corresponding to all polynomials of order a.

Different model complexities: each term in the polynomial is a
feature of the model; increasing the order increases # features.

More complex model class may give better predictive power, but
only if Dwain IS large enough to accurately learn these parameters.

Noiseless Case

f(x) =2x,x € [0,1]
Nipain =10, 0 =0 (train)

® Training

_9 Linear
Poly 3
4 Poly 10
0.0 0.2 0.4 0.6 0.8 1.0
X

f(x) = 2x — 10x° + 15x'%, x € [0,1]
Nirain =10, o =0 (train)

4
2
0 !
® Training
_9 Linear
Poly 3
—4 === Poly 10
0.0 0.2 0.4 0.6 0.8 1.0
X

>

Niest =20, 0 =0 (pred.)

2.5
¢ test
2.0 linear
3rd order
1.5

w1 (0th order
1.0

0.5

0.0

0.25

0.00 0.50 0.75 1.00 1.25

In the absence of noise, fftting and predicting are
identical, provided model has enough flexibility.

Niest =20, 0 =0 (pred.)

¢ Test

linear

3rd order
10th order

0.25 0.50

0.75

1.00 1.25

X

Noisy Case

fx) =2x,x€[0,1]
Nipain =100, o =1 (train)

Training *

Linear
Poly 3
=== Poly 10

0.0 0.2 0.4 0.6 0.8 1.0

f(x) =2x—10x° + 15x'Y, x € [0,1]
Nipain =100, 0 =1 (train)

Training
Linear
Poly 3
== Poly 10

0.4

0.6 0.8

Niest =20, 0 =1 (pred.)

20
¢ Test
15 I
inear
10 3rd order
=== 10th order
ST
0
—5
—10
0.00 0.25 0.50 0.75 1.00 1.25

In the presence of noise, models with less
complexity can exhibit improved predictive power.

Niest =20, 0 =1 (pred.)

20 R
¢ Test
15 linear ¢
10 3rd order
== | ()th order t
> 5
" v 00
0
-5
—10
0.00 0.25 0.50 0.75 1.00 1.25

Overfitting

The 10th order model makes the worst out-of-sample predictions,
even if the data was generated by a 10t order polynomial.

At small sample sizes, noise can create fluctuations in the data
that look like genuine pattern.

Simple models (e.g., linear function) are forced to ignore the
fluctuations and focus on the larger trend.

Complex models can capture both the global trends and noise,
and can be tricked into “overfitting”.

Can avoid overfitting by 1) using less expressive models
(regularization, more later) or 2) increasing the size of training set.

Larger Training Set

Nirain =10000, o =1 (train) 20 Niest =100, 0 =1 (pred.)
4
4 ¢ Test ¢
19 linear §
2 10 3rd order
=== 10th order
=0 s > D
o T.rammg ‘ "“‘0‘ "
_9 Linear 0
Poly 3
—5
—4 Poly 10
0.0 0.2 0.4 0.6 0.8 1.0 —10 0.00 0.25 0.50 0.75 1.00 1.25
X X

 With a larger training set, the 10t order polynomial gives both the
best fits and the most predictive power over the entire training
range x € [0,1] and even slightly beyond to ~ 1.05.

* An illustration of bias-variance tradeoff: simple models have
more “bias” but less “variance”.

Why is ML difficult?

Fitting (existing data) is not predicting (unseen data).

Using a complex model can result in overfitting when the training
data size is small and the data is noisy.

For complex datasets and small training sets, simple models can
be better at prediction due to the bias-variance trade-off.

Difficult to generalize beyond the situations (data range)
encountered in the training set.

Basics of Statistical Learning

Statistical Learning

Hypothesis set (contains all possible models we consider).

The goal of Statistical Learning is to determine a function from
the hypothesis set that approximates f(x) as best as possible.

Intuitively, we want to learn a function that performs probably as
well on new data as on training data.

What is the relation between Ein and Eout ?

Assumption: cannot exactly learn the target function f(x).

Bias-Variance Decomposition

E, .= Bias® + Variance

ou
model sampling
Eout complexity noise
Variance
§ - - ——}——————:_:_:ﬁ-
Lﬁ "f—’——--—
4"
s
R
¢/ =
R Bias
~ . - Rd
Ein

Number of data points

Bias-Variance Decomposition

E, .= Bias® + Variance

ou
model sampling
Eout complexity noise
Variance
S — - ——}——————_—_:_ ey
Lﬁ "f—’——--—
4’—
s
R
¢/ .
// After initial drop-off, Ein Bias
R O v increases with N since model is

Ein not flexible enough to learn f(x)

Number of data points

Bias-Variance Decomposition

E, .= Bias® + Variance

ou
model sampling
Eout complexity noise
Variance In the N — o [imit, the sampling

noise is negligible and Ein = Eout =Bias?

b

e - - - - - - - - —/ = . — ———

b o

w ’—f’———- -

’ﬂ
’4
¢/’
’/ [l mgn s
// After initial drop-off, Ein Bias

R O v increases with N since model is

Ein not flexible enough to learn f(x)

Number of data points

Bias-Variance Trade-off

Eout

Error
/

Variance

/
——— e e | —— —— ——

Model Complexity

Simple models have high-bias while complex models have high variance.
Models with intermediate complexity have the best performance.

Bias-Variance Trade-off

complex model

High variance, x X X "
low-bias model X X
X
X X
\ . /X Xy True model
X X
X | X X
X @ "
X x X X X
X
» X/ simple model
x Low variance,
Xx x x X high-bias model

The average over all the trained complex (i.e., high variance, low-bias)
models is closer to the true model.

Bias-Variance Decomposition

Dataset D={(X,y)} obtained by drawing N samples from the true
data distribution.

True data is generated by a noisy model: y = f(x) + € where € is
normally distributed with mean zero and standard deviation o..

N
Cost function: C(y, f(x,6) = ¥ (y,—f(x:6))”

=1
The estimate for the parameters: 6, = arg min,C (y, (X;6))
IS a function of the dataset D. Thus we obtain a different error for

each dataset. We take expectation value over all these datasets
and over noise, and denote that as - D.e

Bias-Variance Decomposition

 The expected generalization error:

Ep.[Cy. f(X:0p)] = Ep.c | Y (i — f(xi: ép))z}

i

= Ep.c Z(yz f(xl)+f(xi)—f(xi;9p))2}
= ZEe[yl)’1+ Ep.[(F(%:) — f(%i; 0))] + 2B [yi — f(X)IEpIf (%) — f (xi;)]

= Z% + Epl(f(x:) — f(xi; 0p))].
e Further simplifying the last term:

Epl(f(x:) — f(%i; 00)7] = Enl{f(%) — Eplf(xi; 05)] + Eplf(xi; 0p)] — f(*i; 05))%]
= Epl{f(%:) — Eplf(xi; 00)1)*1 + Enlif(xi; 05) — Enlf(xi; 0p)1)°]
— 2Ep[{f (%) — Eplf(%;; OD)]}{f(Xz 017) Ep[f (% 013)]}]
= (f(%;) — Eplf(x:; 01))]) + Ep[{f (% 01)) EDU(&,HD)]}].

Bias-Variance Decomposition

We derived our asserted relation:

E . = Bias? + Variance + Noise

out

The bias defined below measures the deviation of the expectation value
of our estimator from the true value:

Bias® = Z(f x;) — Ep[f(xi; 0p)])

The variance measures how much our estimator fluctuates due to
finite-sample effects:

Var =) " Epl(f(%; 6p) — Eplf(xi; 6p)1)]

The fundamental tension in ML between the complexity of a model and
the amount of training data needed to train it.

With a limited amount of data, it is beneficial to use a less-complex
model with higher-bias (with a worse asymptotic performance).

Summary

Typical problem in ML.
Splitting data into training set and test set.
In-sample error E; may not equal out-of-sample error £ .

Bias-variance trade-off:

< E . > = Bias? + Variance + Noise

out

Example: polynomial regression.

