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Lecture 4: Linear Regression



Recap of Lecture 3

• What is Gradient Descent? 

• Comparing gradient descent vs Newton’s method 

• Limitations of Gradient Descent 

• Stochastic Gradient Descent 

• How can it be modified? E.g. adding momentum 

• Second order methods (RMSProp and ADAM)



Outline for today

• Linear Regression

• Least Square regression Regularization

• Ridge regression

• Lasso regression

• MLE and MAP 

• Linear Regression on 1D Ising model

References: 1803.08823, chapter 5 and 7 Goodfellow et al.  
 



Linear Regression



Setting up the Problem

• Given a dataset:

• Assume the true function/model that generates these samples:

• Compactly cast all samples into an  design matrix: X ∈ ℝn×p

{(yi, x(i)), i = 1,…, n} , x(i) ∈ ℝp

observation vector

X =
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p

response p features

yi = f(x(i); ωtrue) + ϵi
i.i.d. white noise

with zero mean 


and finite variance



Setting up the Problem

• The function  is never known to us explicitly. For linear 
regression, we assume:

• Replace  by  and  by : basis function expansion.

• Goal: find  known as predictor which best approximates .

• For later purposes, define the  norm ( ) of a vector 
 as 

f(x(i); ωtrue)

x(i) ϕ(x(i)) ωTx(i) ωTϕ(x(i))

g(x(i); ω̂) f

Lk 1 ≤ k ∈ ℤ
x = (x1, …, xd) ∈ ℝd

yi = f(x(i)) + ϵi = ω̂T
truex(i) + ϵi

| |x | |k = ( |x1 |k + |x2 |k + … |xd |k )
1/k



Least Square Regression
• Ordinary least squares linear regression (OLS):

• The solution denoted by                                         can be obtained by 
differentiation:

• If ,  is invertible and  is unique.

• If ,  is singular, and  has infinitely many solutions:

rank(X) = p XTX ω̂LS

rank(X) < p XTX ω̂LS
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6. Linear regression

In Section 2, we performed our first numerical ML experiments by fitting datasets generated by polynomials in the
presence of different levels of additive noise. We used the fitted parameters to make predictions on ‘unseen’ observations,
allowing us to gauge the performance of our model on new data. These experiments highlighted the fundamental tension
common to all ML models between how well we fit the training dataset and predictions on new data. The optimal choice
of predictor depended on, among many other things, the functions used to fit the data and the underlying noise level. In
Section 3, we formalized this by introducing the notion of model complexity and the bias–variance decomposition, and
discussed the statistical meaning of learning. In this section, we take a closer look at these ideas in the simple setting of
linear regression.

As in Section 2, fitting a given set of samples (yi, xi) means relating the independent variables xi to their responses
yi. For example, suppose we want to see how the voltage across two sides of a metal slab V changes in response to
the applied electric current I . Normally we would first make a bunch of measurements labeled by i and plot them on a
two-dimensional scatterplot, (Vi, Ii). The next step is to assume, either from an oracle or from theoretical reasoning, some
models that might explain the measurements and measuring their performance. Mathematically, this amounts to finding
some function f such that Vi = f (Ii; w), where w is some parameter (e.g. the electrical resistance R of the metal slab in
the case of Ohm’s law). We then try to minimize the errors made in explaining the given set of measurements based
on our model f by tuning the parameter w. To do so, we need to first define the error function (formally called the loss
function) that characterizes the deviation of our prediction from the actual response.

Before formulating the problem, let us set up the notation. Suppose we are given a dataset with n samples D =

{(yi, x(i))}ni=1, where x(i) is the ith observation vector while yi is its corresponding (scalar) response. We assume that
every sample has p features, namely, x(i) 2 Rp. Let f be the true function/model that generated these samples via
yi = f (x(i); wtrue) + ✏i, where wtrue 2 Rp is a parameter vector and ✏i is some i.i.d. white noise with zero mean and
finite variance. Conventionally, we cast all samples into an n⇥p matrix, X 2 Rn⇥p, called the design matrix, with the rows
X i,: = x(i) 2 Rp, i = 1, . . . , n being observations and the columns X :,j 2 Rn, j = 1, . . . , p being measured features. Bear in
mind that this function f is never known to us explicitly, though in practice we usually presume its functional form. For
example, in linear regression, we assume yi = f (x(i); wtrue) + ✏i = wT

truex(i) + ✏i for some unknown but fixed wtrue 2 Rp.
We want to find a function g with parameters w fit to the data D that can best approximate f . When this is done,

meaning we have found a ŵ such that g(x; ŵ) yields our best estimate of f , we can use this g to make predictions about
the response y0 for a new data point x0, as we did in Section 2.

It will be helpful for our discussion of linear regression to define one last piece of notation. For any real number p � 1,
we define the Lp norm of a vector x = (x1, . . . , xd) 2 Rd to be

||x||p= (|x1|p + · · · + |xd|p)
1
p (36)

6.1. Least-square regression

Ordinary least squares linear regression (OLS) is defined as the minimization of the L2 norm of the difference between
the response yi and the predictor g(x(i); w) = wTx(i):

min
w2Rp

||Xw � y||
2
2= min

w2Rp

nX

i=1

(wTx(i) � yi)2. (37)

In other words, we are looking to find the w which minimizes the L2 error. Geometrically speaking, the predictor function
g(x(i); w) = wTx(i) defines a hyperplane in Rp. Minimizing the least squares error is therefore equivalent to minimizing the
sum of all projections (i.e. residuals) for all points x(i) to this hyperplane (see Fig. 10). Formally, we denote the solution
to this problem as ŵLS:

ŵLS = argmin
w2Rp

||Xw � y||
2
2, (38)

which, after straightforward differentiation, leads to

ŵLS = (XTX)�1XTy. (39)

Note that we have assumed that XTX is invertible, which is often the case when n � p. Formally speaking, if rank(X) = p,
namely, the predictors X :,1, . . . ,X :,p (i.e. columns of X) are linearly independent, then ŵLS is unique. In the case of
rank(X) < p, which happens when p > n, XTX is singular, implying there are infinitely many solutions to the least
squares problem, Eq. (38). In this case, one can easily show that if w0 is a solution, w0 + ⌘ is also a solution for any ⌘
which satisfies X⌘ = 0 (i.e. ⌘ 2 null(X)). Having determined the least squares solution, we can calculate ŷ, the best fit of
our data X , as ŷ = XŵLS = PXy, where PX = X(XTX)�1XT, c.f. Eq. (37). Geometrically, PX is the projection matrix which
acts on y and projects it onto the column space of X , which is spanned by the predictors X :,1, . . . ,X :,p (see Fig. 11). Notice
that we found the optimal solution ŵLS in one shot, without doing any sort of iterative optimization like that discussed
in Section 4.
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∂
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(Xijωj − yi)(Xikωk − yi) = 2(Xijωj − yi)Xim

22 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

6. Linear regression

In Section 2, we performed our first numerical ML experiments by fitting datasets generated by polynomials in the
presence of different levels of additive noise. We used the fitted parameters to make predictions on ‘unseen’ observations,
allowing us to gauge the performance of our model on new data. These experiments highlighted the fundamental tension
common to all ML models between how well we fit the training dataset and predictions on new data. The optimal choice
of predictor depended on, among many other things, the functions used to fit the data and the underlying noise level. In
Section 3, we formalized this by introducing the notion of model complexity and the bias–variance decomposition, and
discussed the statistical meaning of learning. In this section, we take a closer look at these ideas in the simple setting of
linear regression.

As in Section 2, fitting a given set of samples (yi, xi) means relating the independent variables xi to their responses
yi. For example, suppose we want to see how the voltage across two sides of a metal slab V changes in response to
the applied electric current I . Normally we would first make a bunch of measurements labeled by i and plot them on a
two-dimensional scatterplot, (Vi, Ii). The next step is to assume, either from an oracle or from theoretical reasoning, some
models that might explain the measurements and measuring their performance. Mathematically, this amounts to finding
some function f such that Vi = f (Ii; w), where w is some parameter (e.g. the electrical resistance R of the metal slab in
the case of Ohm’s law). We then try to minimize the errors made in explaining the given set of measurements based
on our model f by tuning the parameter w. To do so, we need to first define the error function (formally called the loss
function) that characterizes the deviation of our prediction from the actual response.

Before formulating the problem, let us set up the notation. Suppose we are given a dataset with n samples D =

{(yi, x(i))}ni=1, where x(i) is the ith observation vector while yi is its corresponding (scalar) response. We assume that
every sample has p features, namely, x(i) 2 Rp. Let f be the true function/model that generated these samples via
yi = f (x(i); wtrue) + ✏i, where wtrue 2 Rp is a parameter vector and ✏i is some i.i.d. white noise with zero mean and
finite variance. Conventionally, we cast all samples into an n⇥p matrix, X 2 Rn⇥p, called the design matrix, with the rows
X i,: = x(i) 2 Rp, i = 1, . . . , n being observations and the columns X :,j 2 Rn, j = 1, . . . , p being measured features. Bear in
mind that this function f is never known to us explicitly, though in practice we usually presume its functional form. For
example, in linear regression, we assume yi = f (x(i); wtrue) + ✏i = wT

truex(i) + ✏i for some unknown but fixed wtrue 2 Rp.
We want to find a function g with parameters w fit to the data D that can best approximate f . When this is done,
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(if  is invertible)XTX

ω0 + η where Xη = 0

⇒

→ pick one solution



OLS Performance

• One can show (experiment with the Juypter notebooks):

• Average generalization error:

• If   (higher dim. data), generalization error is very large meaning 
that the model is not learning.

• Even if , still may not learn well due to the intrinsic noise. 

• Can we do better? → Regularization

p ≫ n

p ≈ n
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Fig. 10. Geometric interpretation of least squares regression. The regression function g defines a hyperplane in Rp (green solid line, here we have
p = 2) while the residual of data point x(i) (hollow circles) is its projection onto this hyperplane (bar-ended dashed line).

Fig. 11. The projection matrix PX projects the response vector y onto the column space spanned by the columns of X , span({X :,1, . . . ,X :,p}) (purple
area), thus forming a fitted vector ŷ. The residuals in Eq. (37) are illustrated by the red vector y � ŷ.

In Section 3 we explained that the difference between learning and fitting lies in the prediction on ‘‘unseen" data. It is
therefore necessary to examine the out-of-sample error. For a more refined argument on the role of out-of-sample errors
in linear regression, we encourage the reader to do the exercises in the corresponding Jupyter notebooks. The upshot is,
following our definition of Ēin and Ēout in Section 3, the average in-sample and out-of-sample error can be shown to be

Ēin = � 2
⇣
1 �

p
n

⌘
(40)

Ēout = � 2
⇣
1 +

p
n

⌘
, (41)

provided we obtain the least squares solution ŵLS from i.i.d. samples X and y generated through y = Xwtrue+✏.3 Therefore,
we can calculate the average generalization error explicitly:

|Ēin � Ēout| = 2� 2 p
n
. (42)

This imparts an important message: if we have p � n (i.e. high-dimensional data), the generalization error is extremely
large, meaning the model is not learning. Even when we have p ⇡ n, we might still not learn well due to the intrinsic
noise � 2. One way to ameliorate this is, as we shall see in the following few sections, to use regularization. We will mainly
focus on two forms of regularization: the first one employs an L2 penalty and is called Ridge regression, while the second
uses an L1 penalty and is called LASSO.

6.2. Ridge-regression

In this section, we study the effect of adding to the least squares loss function a regularizer defined as the L2 norm
of the parameter vector we wish to optimize over. In other words, we want to solve the following penalized regression
problem called Ridge regression:

ŵRidge(�) = argmin
w2Rp

�
||Xw � y||

2
2+�||w||

2
2
�
. (43)

This problem is equivalent to the following constrained optimization problem

ŵRidge(t) = argmin
w2Rp: ||w||22t

||Xw � y||
2
2. (44)

3 This requires that ✏ is a noise vector whose elements are i.i.d. of zero mean and variance � 2, and is independent of the samples X .
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Ēout = � 2
⇣
1 +

p
n

⌘
, (41)
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Ridge Regression

• Add L2 norm of the parameter vector as penalty in loss function:

• Regularizer: effectively constraining the magnitude of parameters.

• Solving this constrained minimization problem by differentiation:
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in linear regression, we encourage the reader to do the exercises in the corresponding Jupyter notebooks. The upshot is,
following our definition of Ēin and Ēout in Section 3, the average in-sample and out-of-sample error can be shown to be

Ēin = � 2
⇣
1 �

p
n

⌘
(40)

Ēout = � 2
⇣
1 +

p
n

⌘
, (41)

provided we obtain the least squares solution ŵLS from i.i.d. samples X and y generated through y = Xwtrue+✏.3 Therefore,
we can calculate the average generalization error explicitly:

|Ēin � Ēout| = 2� 2 p
n
. (42)

This imparts an important message: if we have p � n (i.e. high-dimensional data), the generalization error is extremely
large, meaning the model is not learning. Even when we have p ⇡ n, we might still not learn well due to the intrinsic
noise � 2. One way to ameliorate this is, as we shall see in the following few sections, to use regularization. We will mainly
focus on two forms of regularization: the first one employs an L2 penalty and is called Ridge regression, while the second
uses an L1 penalty and is called LASSO.

6.2. Ridge-regression

In this section, we study the effect of adding to the least squares loss function a regularizer defined as the L2 norm
of the parameter vector we wish to optimize over. In other words, we want to solve the following penalized regression
problem called Ridge regression:

ŵRidge(�) = argmin
w2Rp

�
||Xw � y||

2
2+�||w||

2
2
�
. (43)

This problem is equivalent to the following constrained optimization problem

ŵRidge(t) = argmin
w2Rp: ||w||22t

||Xw � y||
2
2. (44)

3 This requires that ✏ is a noise vector whose elements are i.i.d. of zero mean and variance � 2, and is independent of the samples X .

⇔

0 = 2(Xijωj − yi)Xim + 2λωm
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This means that for any t � 0 and solution ŵRidge in Eq. (44), there exists a value � � 0 such that ŵRidge solves Eq. (43),
and vice versa.4 With this equivalence, it is obvious that by adding a regularization term �||w||22, to our least squares loss
function, we are effectively constraining the magnitude of the parameter vector learned from the data.

To see this, let us solve Eq. (43) explicitly. Differentiating w.r.t. w, we obtain,

ŵRidge(�) = (XTX + �Ip⇥p)�1XTy. (45)

In fact, when X is orthogonal, one can simplify this expression further:

ŵRidge(�) =
ŵLS

1 + �
, for orthogonal X, (46)

where ŵLS is the least squares solution given by Eq. (39). This implies that the ridge estimate is merely the least squares
estimate scaled by a factor (1 + �)�1.

Can we derive a similar relation between the fitted vector ŷ = XŵRidge and the prediction made by least squares linear
regression? To answer this, let us do a singular value decomposition (SVD) on X . Recall that the SVD of an n ⇥ p matrix
X has the form

X = UDV T, (47)

where U 2 Rn⇥p and V 2 Rp⇥p are orthogonal matrices such that the columns of U span the column space of X
while the columns of V span the row space of X . D 2 Rp⇥p =diag(d1, d2, . . . , dp) is a diagonal matrix with entries
d1 � d2 � · · · dp � 0 called the singular values of X . Note that X is singular if there is at least one dj = 0. By writing X
in terms of its SVD, one can recast the Ridge estimator Eq. (45) as

ŵRidge = V (D2
+ �I)�1DU Ty, (48)

which implies that the Ridge predictor satisfies

ŷRidge = XŵRidge

= UD(D2
+ �I)�1DU Ty

=

pX

j=1

U :,j
d2j

d2j + �
U T

:jy (49)

 UU Ty (50)
= Xŷ ⌘ ŷLS, (51)

where U :,j are the columns of U . Note that in the inequality step we assumed � � 0 and used SVD to simplify Eq. (39).
By comparing Eq. (49) with Eq. (51), it is clear that in order to compute the fitted vector ŷ, both Ridge and least squares
linear regression have to project y to the column space of X . The only difference is that Ridge regression further shrinks
each basis component j by a factor d2j /(d

2
j + �). We encourage the reader to do the exercises in Notebook 3 to develop

further intuition about how Ridge regression works.

6.3. LASSO And sparse regression

In this section, we study the effects of adding an L1 regularization penalty, conventionally called LASSO, which stands
for ‘‘least absolute shrinkage and selection operator’’. Concretely, LASSO in the penalized form is defined by the following
regularized regression problem:

ŵLASSO(�) = argmin
w2Rp

||Xw � y||
2
2+�||w||1. (52)

As in Ridge regression, there is another formulation for LASSO based on constrained optimization, namely,

ŵLASSO(t) = argmin
w2Rp: ||w||1t

||Xw � y||
2
2. (53)

The equivalence interpretation is the same as in Ridge regression, namely, for any t � 0 and solution ŵLASSO in Eq. (53),
there is a value � � 0 such that ŵLASSO solves Eq. (52), and vice versa. However, to get the analytic solution of LASSO, we
cannot simply take the gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere differentiable, in
particular at any point where wj = 0 (see Fig. 13). Nonetheless, LASSO is a convex problem. Therefore, we can invoke the

4 Note that the equivalence between the penalized and the constrained (regularized) form of least square optimization does not always hold. It
holds for Ridge and LASSO (introduced later), but not for best subset selection which is defined by choosing a L0 norm: �||w||0. In this case, for
every � > 0 and any ŵBS that solves the penalized form of best subset selection, there is a value t � 0 such that ŵBS also solves that constrained
form of best subset selection, but the converse is not true.

⇒
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This means that for any t � 0 and solution ŵRidge in Eq. (44), there exists a value � � 0 such that ŵRidge solves Eq. (43),
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where U :,j are the columns of U . Note that in the inequality step we assumed � � 0 and used SVD to simplify Eq. (39).
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6.3. LASSO And sparse regression

In this section, we study the effects of adding an L1 regularization penalty, conventionally called LASSO, which stands
for ‘‘least absolute shrinkage and selection operator’’. Concretely, LASSO in the penalized form is defined by the following
regularized regression problem:
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As in Ridge regression, there is another formulation for LASSO based on constrained optimization, namely,
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The equivalence interpretation is the same as in Ridge regression, namely, for any t � 0 and solution ŵLASSO in Eq. (53),
there is a value � � 0 such that ŵLASSO solves Eq. (52), and vice versa. However, to get the analytic solution of LASSO, we
cannot simply take the gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere differentiable, in
particular at any point where wj = 0 (see Fig. 13). Nonetheless, LASSO is a convex problem. Therefore, we can invoke the

4 Note that the equivalence between the penalized and the constrained (regularized) form of least square optimization does not always hold. It
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form of best subset selection, but the converse is not true.

=

orthogonal X



Ridge Regression

• What is the relation between  and ?

• Singular value decomposition (SVD):

• U and V are (semi)-orthogonal matrices:

• The diagonal values of D: 

•  X is singular if at least one .

̂yRidge ̂yLS

dj ≥ 0

24 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

This means that for any t � 0 and solution ŵRidge in Eq. (44), there exists a value � � 0 such that ŵRidge solves Eq. (43),
and vice versa.4 With this equivalence, it is obvious that by adding a regularization term �||w||22, to our least squares loss
function, we are effectively constraining the magnitude of the parameter vector learned from the data.

To see this, let us solve Eq. (43) explicitly. Differentiating w.r.t. w, we obtain,

ŵRidge(�) = (XTX + �Ip⇥p)�1XTy. (45)

In fact, when X is orthogonal, one can simplify this expression further:

ŵRidge(�) =
ŵLS

1 + �
, for orthogonal X, (46)

where ŵLS is the least squares solution given by Eq. (39). This implies that the ridge estimate is merely the least squares
estimate scaled by a factor (1 + �)�1.

Can we derive a similar relation between the fitted vector ŷ = XŵRidge and the prediction made by least squares linear
regression? To answer this, let us do a singular value decomposition (SVD) on X . Recall that the SVD of an n ⇥ p matrix
X has the form

X = UDV T, (47)

where U 2 Rn⇥p and V 2 Rp⇥p are orthogonal matrices such that the columns of U span the column space of X
while the columns of V span the row space of X . D 2 Rp⇥p =diag(d1, d2, . . . , dp) is a diagonal matrix with entries
d1 � d2 � · · · dp � 0 called the singular values of X . Note that X is singular if there is at least one dj = 0. By writing X
in terms of its SVD, one can recast the Ridge estimator Eq. (45) as

ŵRidge = V (D2
+ �I)�1DU Ty, (48)

which implies that the Ridge predictor satisfies

ŷRidge = XŵRidge

= UD(D2
+ �I)�1DU Ty

=
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d2j + �
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 UU Ty (50)
= Xŷ ⌘ ŷLS, (51)

where U :,j are the columns of U . Note that in the inequality step we assumed � � 0 and used SVD to simplify Eq. (39).
By comparing Eq. (49) with Eq. (51), it is clear that in order to compute the fitted vector ŷ, both Ridge and least squares
linear regression have to project y to the column space of X . The only difference is that Ridge regression further shrinks
each basis component j by a factor d2j /(d

2
j + �). We encourage the reader to do the exercises in Notebook 3 to develop

further intuition about how Ridge regression works.

6.3. LASSO And sparse regression

In this section, we study the effects of adding an L1 regularization penalty, conventionally called LASSO, which stands
for ‘‘least absolute shrinkage and selection operator’’. Concretely, LASSO in the penalized form is defined by the following
regularized regression problem:

ŵLASSO(�) = argmin
w2Rp

||Xw � y||
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2+�||w||1. (52)

As in Ridge regression, there is another formulation for LASSO based on constrained optimization, namely,

ŵLASSO(t) = argmin
w2Rp: ||w||1t

||Xw � y||
2
2. (53)

The equivalence interpretation is the same as in Ridge regression, namely, for any t � 0 and solution ŵLASSO in Eq. (53),
there is a value � � 0 such that ŵLASSO solves Eq. (52), and vice versa. However, to get the analytic solution of LASSO, we
cannot simply take the gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere differentiable, in
particular at any point where wj = 0 (see Fig. 13). Nonetheless, LASSO is a convex problem. Therefore, we can invoke the

4 Note that the equivalence between the penalized and the constrained (regularized) form of least square optimization does not always hold. It
holds for Ridge and LASSO (introduced later), but not for best subset selection which is defined by choosing a L0 norm: �||w||0. In this case, for
every � > 0 and any ŵBS that solves the penalized form of best subset selection, there is a value t � 0 such that ŵBS also solves that constrained
form of best subset selection, but the converse is not true.
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ŵLS

1 + �
, for orthogonal X, (46)
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where U :,j are the columns of U . Note that in the inequality step we assumed � � 0 and used SVD to simplify Eq. (39).
By comparing Eq. (49) with Eq. (51), it is clear that in order to compute the fitted vector ŷ, both Ridge and least squares
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each basis component j by a factor d2j /(d
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In this section, we study the effects of adding an L1 regularization penalty, conventionally called LASSO, which stands
for ‘‘least absolute shrinkage and selection operator’’. Concretely, LASSO in the penalized form is defined by the following
regularized regression problem:

ŵLASSO(�) = argmin
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As in Ridge regression, there is another formulation for LASSO based on constrained optimization, namely,

ŵLASSO(t) = argmin
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2. (53)

The equivalence interpretation is the same as in Ridge regression, namely, for any t � 0 and solution ŵLASSO in Eq. (53),
there is a value � � 0 such that ŵLASSO solves Eq. (52), and vice versa. However, to get the analytic solution of LASSO, we
cannot simply take the gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere differentiable, in
particular at any point where wj = 0 (see Fig. 13). Nonetheless, LASSO is a convex problem. Therefore, we can invoke the

4 Note that the equivalence between the penalized and the constrained (regularized) form of least square optimization does not always hold. It
holds for Ridge and LASSO (introduced later), but not for best subset selection which is defined by choosing a L0 norm: �||w||0. In this case, for
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and vice versa.4 With this equivalence, it is obvious that by adding a regularization term �||w||22, to our least squares loss
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where ŵLS is the least squares solution given by Eq. (39). This implies that the ridge estimate is merely the least squares
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where U :,j are the columns of U . Note that in the inequality step we assumed � � 0 and used SVD to simplify Eq. (39).
By comparing Eq. (49) with Eq. (51), it is clear that in order to compute the fitted vector ŷ, both Ridge and least squares
linear regression have to project y to the column space of X . The only difference is that Ridge regression further shrinks
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This means that for any t � 0 and solution ŵRidge in Eq. (44), there exists a value � � 0 such that ŵRidge solves Eq. (43),
and vice versa.4 With this equivalence, it is obvious that by adding a regularization term �||w||22, to our least squares loss
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in terms of its SVD, one can recast the Ridge estimator Eq. (45) as
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By comparing Eq. (49) with Eq. (51), it is clear that in order to compute the fitted vector ŷ, both Ridge and least squares
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cannot simply take the gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere differentiable, in
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every � > 0 and any ŵBS that solves the penalized form of best subset selection, there is a value t � 0 such that ŵBS also solves that constrained
form of best subset selection, but the converse is not true.
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This means that for any t � 0 and solution ŵRidge in Eq. (44), there exists a value � � 0 such that ŵRidge solves Eq. (43),
and vice versa.4 With this equivalence, it is obvious that by adding a regularization term �||w||22, to our least squares loss
function, we are effectively constraining the magnitude of the parameter vector learned from the data.

To see this, let us solve Eq. (43) explicitly. Differentiating w.r.t. w, we obtain,

ŵRidge(�) = (XTX + �Ip⇥p)�1XTy. (45)

In fact, when X is orthogonal, one can simplify this expression further:

ŵRidge(�) =
ŵLS

1 + �
, for orthogonal X, (46)

where ŵLS is the least squares solution given by Eq. (39). This implies that the ridge estimate is merely the least squares
estimate scaled by a factor (1 + �)�1.

Can we derive a similar relation between the fitted vector ŷ = XŵRidge and the prediction made by least squares linear
regression? To answer this, let us do a singular value decomposition (SVD) on X . Recall that the SVD of an n ⇥ p matrix
X has the form

X = UDV T, (47)

where U 2 Rn⇥p and V 2 Rp⇥p are orthogonal matrices such that the columns of U span the column space of X
while the columns of V span the row space of X . D 2 Rp⇥p =diag(d1, d2, . . . , dp) is a diagonal matrix with entries
d1 � d2 � · · · dp � 0 called the singular values of X . Note that X is singular if there is at least one dj = 0. By writing X
in terms of its SVD, one can recast the Ridge estimator Eq. (45) as

ŵRidge = V (D2
+ �I)�1DU Ty, (48)

which implies that the Ridge predictor satisfies

ŷRidge = XŵRidge

= UD(D2
+ �I)�1DU Ty

=

pX

j=1

U :,j
d2j

d2j + �
U T

:jy (49)

 UU Ty (50)
= Xŷ ⌘ ŷLS, (51)

where U :,j are the columns of U . Note that in the inequality step we assumed � � 0 and used SVD to simplify Eq. (39).
By comparing Eq. (49) with Eq. (51), it is clear that in order to compute the fitted vector ŷ, both Ridge and least squares
linear regression have to project y to the column space of X . The only difference is that Ridge regression further shrinks
each basis component j by a factor d2j /(d

2
j + �). We encourage the reader to do the exercises in Notebook 3 to develop

further intuition about how Ridge regression works.

6.3. LASSO And sparse regression

In this section, we study the effects of adding an L1 regularization penalty, conventionally called LASSO, which stands
for ‘‘least absolute shrinkage and selection operator’’. Concretely, LASSO in the penalized form is defined by the following
regularized regression problem:

ŵLASSO(�) = argmin
w2Rp

||Xw � y||
2
2+�||w||1. (52)

As in Ridge regression, there is another formulation for LASSO based on constrained optimization, namely,

ŵLASSO(t) = argmin
w2Rp: ||w||1t

||Xw � y||
2
2. (53)

The equivalence interpretation is the same as in Ridge regression, namely, for any t � 0 and solution ŵLASSO in Eq. (53),
there is a value � � 0 such that ŵLASSO solves Eq. (52), and vice versa. However, to get the analytic solution of LASSO, we
cannot simply take the gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere differentiable, in
particular at any point where wj = 0 (see Fig. 13). Nonetheless, LASSO is a convex problem. Therefore, we can invoke the

4 Note that the equivalence between the penalized and the constrained (regularized) form of least square optimization does not always hold. It
holds for Ridge and LASSO (introduced later), but not for best subset selection which is defined by choosing a L0 norm: �||w||0. In this case, for
every � > 0 and any ŵBS that solves the penalized form of best subset selection, there is a value t � 0 such that ŵBS also solves that constrained
form of best subset selection, but the converse is not true.

̂yLS = Xω̂LS

= X(XTX)−1XTy

= UUTy
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and vice versa.4 With this equivalence, it is obvious that by adding a regularization term �||w||22, to our least squares loss
function, we are effectively constraining the magnitude of the parameter vector learned from the data.

To see this, let us solve Eq. (43) explicitly. Differentiating w.r.t. w, we obtain,
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regularized regression problem:
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The equivalence interpretation is the same as in Ridge regression, namely, for any t � 0 and solution ŵLASSO in Eq. (53),
there is a value � � 0 such that ŵLASSO solves Eq. (52), and vice versa. However, to get the analytic solution of LASSO, we
cannot simply take the gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere differentiable, in
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Fig. 12. [Adapted from (Friedman et al., 2001)] Comparing LASSO and Ridge regression. The black 45 degree line is the unconstrained estimate for
reference. The estimators are shown by red dashed lines. For LASSO, this corresponds to the soft-thresholding function Eq. (54) while for Ridge
regression the solution is given by Eq. (46).

Fig. 13. [Adapted from (Friedman et al., 2001)] Illustration of LASSO (left) and Ridge regression (right). The blue concentric ovals are the contours
of the regression function while the red shaded regions represent the constraint functions: (left) |w1|+ |w2|  t and (right) w2

1 +w2
2  t . Intuitively,

since the constraint function of LASSO has more protrusions, the ovals tend to intersect the constraint at the vertex, as shown on the left. Since the
vertices correspond to parameter vectors w with only one non-vanishing component, LASSO tends to give sparse solution.

so-called ‘‘subgradient optimality condition" (Boyd and Vandenberghe, 2004; Rockafellar, 2015) in optimization theory to
obtain the solution. To keep the notation simple, we only show the solution assuming X is orthogonal:

ŵLASSO
j (�) = sign(ŵLS

j )(|ŵLS
j | � �)+, for orthogonal X, (54)

where (x)+ denotes the positive part of x and ŵLS
j is the jth component of least squares solution. In Fig. 12, we compare

the Ridge solution Eq. (46) with LASSO solution Eq. (54). As we mentioned above, the Ridge solution is the least squares
solution scaled by a factor of (1 + �). Here LASSO does something conventionally called ‘‘soft-thresholding" (see Fig. 12).
We encourage interested readers to work out the exercises in Notebook 3 to explore what this function does.

How different are the solutions found using LASSO and Ridge regression? In general, LASSO tends to give sparse
solutions, meaning many components of ŵLASSO are zero. An intuitive justification for this result is provided in Fig. 13.
In short, to solve a constrained optimization problem with a fixed regularization strength t � 0, for example, Eq. (44)
and Eq. (53), one first carves out the ‘‘feasible region" specified by the regularizer in the {w1, . . . , wd} space. This means
that a solution ŵ0 is legitimate only if it falls in this region. Then one proceeds by plotting the contours of the least
squares regressors in an increasing manner until the contour touches the feasible region. The point where this occurs is
the solution to our optimization problem (see Fig. 13 for illustration). Loosely speaking, since the L1 regularizer of LASSO
has sharp protrusions (i.e. vertices) along the axes, and because the regressor contours are in the shape of ovals (it is
quadratic in w), their intersection tends to occur at the vertex of the feasibility region, implying the solution vector will
be sparse.

In Notebook 3, we analyze a Diabetes dataset using both LASSO and Ridge regression to predict the diabetes outcome
one year forward (Efron et al., 2004). In Figs. 14, 15, we show the performance of both methods and the solutions ŵLASSO(�),
ŵRidge(�) explicitly. More details of this dataset and our regression implementation can be found in Notebook 3.

6.4. Using linear regression to learn the ising hamiltonian

To gain deeper intuition about what kind of physics problems linear regression allows us to tackle, consider the
following problem of learning the Hamiltonian for the Ising model. Imagine you are given an ensemble of random spin
configurations, and assigned to each state its energy, generated from the 1D Ising model:

H = �J
LX

j=1

SjSj+1 (55)
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solutions, meaning many components of ŵLASSO are zero. An intuitive justification for this result is provided in Fig. 13.
In short, to solve a constrained optimization problem with a fixed regularization strength t � 0, for example, Eq. (44)
and Eq. (53), one first carves out the ‘‘feasible region" specified by the regularizer in the {w1, . . . , wd} space. This means
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Bayesian Formulation

• Formulate least square regression from a Bayesian point of view.

• Regularization corresponds to a choice of prior.

• A regression model is defined by a conditional probability:

• For linear regression:

• Maximum likelihood estimation (MLE) for  is the one that 
minimizes the mean square error used in OLS.
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Now let us examine the two regularizers we introduced earlier. A close inspection reveals that LASSO and Ridge
regressions are both convex problems but only Ridge regression is a strictly convex problem (assuming � > 0). From
convexity theory, this means that we always have a unique solution for Ridge but not necessary for LASSO. In fact, it was
recently shown that under mild conditions, such as demanding general position for columns of X , the LASSO solution is
indeed unique (Tibshirani et al., 2013). Apart from this theoretical characterization, (Zou and Hastie, 2005) introduced
the notion of Elastic Net to retain the desirable properties of both LASSO and Ridge regression, which is now one of the
standard tools for regression analysis and machine learning. We refer to reader to explore this in Notebook 2.

6.6. Bayesian formulation of linear regression

In Section 5, we gave an overview of Bayesian inference and phrased it in the context of learning and uncertainty
quantification. In this section we formulate least squares regression from a Bayesian point of view. We shall see that
regularization in learning will emerge naturally as part of the Bayesian inference procedure.

From the setup of linear regression, the data D used to fit the regression model is generated through y = xTw + ✏.
We often assume that ✏ is a Gaussian noise with mean zero and variance � 2. To connect linear regression to the Bayesian
framework, we often write the model as

p(y|x, ✓) = N (y|µ(x), � 2(x)). (61)

In other words, our regression model is defined by a conditional probability that depends not only on data x but on some
model parameters ✓. For example, if the mean is a linear function of x given by µ = xTw, and the variance is fixed
� 2(x) = � 2, then ✓ = (w, � 2).

In statistics, many problems rely on estimation of some parameters of interest. For example, suppose we are given
the height data of 20 junior students from a regional high school, but what we are interested in is the average height
of all high school juniors in the whole county. It is conceivable that the data we are given are not representative of the
student population as a whole. It is therefore necessary to devise a systematic way to preform reliable estimation. Here
we present the maximum likelihood estimation (MLE), and show that MLE for ✓ is the one that minimizes the mean squared
error (MSE) used in OLS, see Section 6.1.

MLE is defined by maximizing the log-likelihood w.r.t. the parameters ✓:

✓̂ ⌘ argmax
✓

log p(D|✓). (62)

Using the assumption that samples are i.i.d., we can write the log-likelihood as

l(✓) ⌘ log p(D|✓) =

nX

i=1

log p(yi|x(i), ✓). (63)

Note that the conditional dependence of the response variable yi on the independent variable x(i) in the likelihood function
is made explicit since in regression the observed value of data, yi, is predicted based on x(i) using a model that is assumed
to be a probability distribution that depends on unknown parameter ✓. This distribution, when endowed with ✓, can, as
we hope, potentially explain our prediction on yi. By definition, such distribution is the likelihood function we discussed
in Section 5. Note that this is consistent with the formal statistical treatment of regression where the goal is to estimate
the conditional expectation of the dependent variable given the value of the independent variable (sometimes called the
covariate) (Wasserman, 2013). We stress that this notation does not imply x(i) is unknown — it is still part of the observed
data!

Using Eq. (61), we get

l(✓) = �
1

2� 2

nX

i=1

�
yi � wTx(i)

�2
�

n
2
log

�
2⇡� 2�

= �
1

2� 2 ||Xw � y||
2
2+ const. (64)

By comparing Eq. (38) and Eq. (64), it is clear that performing least squares is the same as maximizing the log-likelihood
of this model.

What about adding regularization? In Section 5, we introduced the maximum a posteriori probability (MAP) estimate.
Here we show that it actually corresponds to regularized linear regression, where the choice of prior determines the type
of regularization. Recall Bayes’ rule

p(✓|D) / p(D|✓)p(✓). (65)

Now instead of maximizing the log-likelihood, l(✓) = log p(D|✓), let us maximize the log posterior, log p(✓|D). Invoking
Eq. (65), the MAP estimator becomes

✓̂MAP ⌘ argmax
✓

log p(D|✓) + log p(✓). (66)
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Now let us examine the two regularizers we introduced earlier. A close inspection reveals that LASSO and Ridge
regressions are both convex problems but only Ridge regression is a strictly convex problem (assuming � > 0). From
convexity theory, this means that we always have a unique solution for Ridge but not necessary for LASSO. In fact, it was
recently shown that under mild conditions, such as demanding general position for columns of X , the LASSO solution is
indeed unique (Tibshirani et al., 2013). Apart from this theoretical characterization, (Zou and Hastie, 2005) introduced
the notion of Elastic Net to retain the desirable properties of both LASSO and Ridge regression, which is now one of the
standard tools for regression analysis and machine learning. We refer to reader to explore this in Notebook 2.

6.6. Bayesian formulation of linear regression

In Section 5, we gave an overview of Bayesian inference and phrased it in the context of learning and uncertainty
quantification. In this section we formulate least squares regression from a Bayesian point of view. We shall see that
regularization in learning will emerge naturally as part of the Bayesian inference procedure.

From the setup of linear regression, the data D used to fit the regression model is generated through y = xTw + ✏.
We often assume that ✏ is a Gaussian noise with mean zero and variance � 2. To connect linear regression to the Bayesian
framework, we often write the model as

p(y|x, ✓) = N (y|µ(x), � 2(x)). (61)

In other words, our regression model is defined by a conditional probability that depends not only on data x but on some
model parameters ✓. For example, if the mean is a linear function of x given by µ = xTw, and the variance is fixed
� 2(x) = � 2, then ✓ = (w, � 2).

In statistics, many problems rely on estimation of some parameters of interest. For example, suppose we are given
the height data of 20 junior students from a regional high school, but what we are interested in is the average height
of all high school juniors in the whole county. It is conceivable that the data we are given are not representative of the
student population as a whole. It is therefore necessary to devise a systematic way to preform reliable estimation. Here
we present the maximum likelihood estimation (MLE), and show that MLE for ✓ is the one that minimizes the mean squared
error (MSE) used in OLS, see Section 6.1.

MLE is defined by maximizing the log-likelihood w.r.t. the parameters ✓:

✓̂ ⌘ argmax
✓

log p(D|✓). (62)

Using the assumption that samples are i.i.d., we can write the log-likelihood as

l(✓) ⌘ log p(D|✓) =

nX

i=1

log p(yi|x(i), ✓). (63)

Note that the conditional dependence of the response variable yi on the independent variable x(i) in the likelihood function
is made explicit since in regression the observed value of data, yi, is predicted based on x(i) using a model that is assumed
to be a probability distribution that depends on unknown parameter ✓. This distribution, when endowed with ✓, can, as
we hope, potentially explain our prediction on yi. By definition, such distribution is the likelihood function we discussed
in Section 5. Note that this is consistent with the formal statistical treatment of regression where the goal is to estimate
the conditional expectation of the dependent variable given the value of the independent variable (sometimes called the
covariate) (Wasserman, 2013). We stress that this notation does not imply x(i) is unknown — it is still part of the observed
data!

Using Eq. (61), we get
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By comparing Eq. (38) and Eq. (64), it is clear that performing least squares is the same as maximizing the log-likelihood
of this model.

What about adding regularization? In Section 5, we introduced the maximum a posteriori probability (MAP) estimate.
Here we show that it actually corresponds to regularized linear regression, where the choice of prior determines the type
of regularization. Recall Bayes’ rule

p(✓|D) / p(D|✓)p(✓). (65)

Now instead of maximizing the log-likelihood, l(✓) = log p(D|✓), let us maximize the log posterior, log p(✓|D). Invoking
Eq. (65), the MAP estimator becomes

✓̂MAP ⌘ argmax
✓

log p(D|✓) + log p(✓). (66)
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Now let us examine the two regularizers we introduced earlier. A close inspection reveals that LASSO and Ridge
regressions are both convex problems but only Ridge regression is a strictly convex problem (assuming � > 0). From
convexity theory, this means that we always have a unique solution for Ridge but not necessary for LASSO. In fact, it was
recently shown that under mild conditions, such as demanding general position for columns of X , the LASSO solution is
indeed unique (Tibshirani et al., 2013). Apart from this theoretical characterization, (Zou and Hastie, 2005) introduced
the notion of Elastic Net to retain the desirable properties of both LASSO and Ridge regression, which is now one of the
standard tools for regression analysis and machine learning. We refer to reader to explore this in Notebook 2.

6.6. Bayesian formulation of linear regression

In Section 5, we gave an overview of Bayesian inference and phrased it in the context of learning and uncertainty
quantification. In this section we formulate least squares regression from a Bayesian point of view. We shall see that
regularization in learning will emerge naturally as part of the Bayesian inference procedure.

From the setup of linear regression, the data D used to fit the regression model is generated through y = xTw + ✏.
We often assume that ✏ is a Gaussian noise with mean zero and variance � 2. To connect linear regression to the Bayesian
framework, we often write the model as

p(y|x, ✓) = N (y|µ(x), � 2(x)). (61)

In other words, our regression model is defined by a conditional probability that depends not only on data x but on some
model parameters ✓. For example, if the mean is a linear function of x given by µ = xTw, and the variance is fixed
� 2(x) = � 2, then ✓ = (w, � 2).

In statistics, many problems rely on estimation of some parameters of interest. For example, suppose we are given
the height data of 20 junior students from a regional high school, but what we are interested in is the average height
of all high school juniors in the whole county. It is conceivable that the data we are given are not representative of the
student population as a whole. It is therefore necessary to devise a systematic way to preform reliable estimation. Here
we present the maximum likelihood estimation (MLE), and show that MLE for ✓ is the one that minimizes the mean squared
error (MSE) used in OLS, see Section 6.1.

MLE is defined by maximizing the log-likelihood w.r.t. the parameters ✓:
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Using the assumption that samples are i.i.d., we can write the log-likelihood as

l(✓) ⌘ log p(D|✓) =
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log p(yi|x(i), ✓). (63)

Note that the conditional dependence of the response variable yi on the independent variable x(i) in the likelihood function
is made explicit since in regression the observed value of data, yi, is predicted based on x(i) using a model that is assumed
to be a probability distribution that depends on unknown parameter ✓. This distribution, when endowed with ✓, can, as
we hope, potentially explain our prediction on yi. By definition, such distribution is the likelihood function we discussed
in Section 5. Note that this is consistent with the formal statistical treatment of regression where the goal is to estimate
the conditional expectation of the dependent variable given the value of the independent variable (sometimes called the
covariate) (Wasserman, 2013). We stress that this notation does not imply x(i) is unknown — it is still part of the observed
data!
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By comparing Eq. (38) and Eq. (64), it is clear that performing least squares is the same as maximizing the log-likelihood
of this model.

What about adding regularization? In Section 5, we introduced the maximum a posteriori probability (MAP) estimate.
Here we show that it actually corresponds to regularized linear regression, where the choice of prior determines the type
of regularization. Recall Bayes’ rule

p(✓|D) / p(D|✓)p(✓). (65)

Now instead of maximizing the log-likelihood, l(✓) = log p(D|✓), let us maximize the log posterior, log p(✓|D). Invoking
Eq. (65), the MAP estimator becomes

✓̂MAP ⌘ argmax
✓

log p(D|✓) + log p(✓). (66)
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Now let us examine the two regularizers we introduced earlier. A close inspection reveals that LASSO and Ridge
regressions are both convex problems but only Ridge regression is a strictly convex problem (assuming � > 0). From
convexity theory, this means that we always have a unique solution for Ridge but not necessary for LASSO. In fact, it was
recently shown that under mild conditions, such as demanding general position for columns of X , the LASSO solution is
indeed unique (Tibshirani et al., 2013). Apart from this theoretical characterization, (Zou and Hastie, 2005) introduced
the notion of Elastic Net to retain the desirable properties of both LASSO and Ridge regression, which is now one of the
standard tools for regression analysis and machine learning. We refer to reader to explore this in Notebook 2.

6.6. Bayesian formulation of linear regression

In Section 5, we gave an overview of Bayesian inference and phrased it in the context of learning and uncertainty
quantification. In this section we formulate least squares regression from a Bayesian point of view. We shall see that
regularization in learning will emerge naturally as part of the Bayesian inference procedure.

From the setup of linear regression, the data D used to fit the regression model is generated through y = xTw + ✏.
We often assume that ✏ is a Gaussian noise with mean zero and variance � 2. To connect linear regression to the Bayesian
framework, we often write the model as

p(y|x, ✓) = N (y|µ(x), � 2(x)). (61)

In other words, our regression model is defined by a conditional probability that depends not only on data x but on some
model parameters ✓. For example, if the mean is a linear function of x given by µ = xTw, and the variance is fixed
� 2(x) = � 2, then ✓ = (w, � 2).

In statistics, many problems rely on estimation of some parameters of interest. For example, suppose we are given
the height data of 20 junior students from a regional high school, but what we are interested in is the average height
of all high school juniors in the whole county. It is conceivable that the data we are given are not representative of the
student population as a whole. It is therefore necessary to devise a systematic way to preform reliable estimation. Here
we present the maximum likelihood estimation (MLE), and show that MLE for ✓ is the one that minimizes the mean squared
error (MSE) used in OLS, see Section 6.1.

MLE is defined by maximizing the log-likelihood w.r.t. the parameters ✓:

✓̂ ⌘ argmax
✓

log p(D|✓). (62)

Using the assumption that samples are i.i.d., we can write the log-likelihood as

l(✓) ⌘ log p(D|✓) =

nX

i=1

log p(yi|x(i), ✓). (63)

Note that the conditional dependence of the response variable yi on the independent variable x(i) in the likelihood function
is made explicit since in regression the observed value of data, yi, is predicted based on x(i) using a model that is assumed
to be a probability distribution that depends on unknown parameter ✓. This distribution, when endowed with ✓, can, as
we hope, potentially explain our prediction on yi. By definition, such distribution is the likelihood function we discussed
in Section 5. Note that this is consistent with the formal statistical treatment of regression where the goal is to estimate
the conditional expectation of the dependent variable given the value of the independent variable (sometimes called the
covariate) (Wasserman, 2013). We stress that this notation does not imply x(i) is unknown — it is still part of the observed
data!

Using Eq. (61), we get
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By comparing Eq. (38) and Eq. (64), it is clear that performing least squares is the same as maximizing the log-likelihood
of this model.

What about adding regularization? In Section 5, we introduced the maximum a posteriori probability (MAP) estimate.
Here we show that it actually corresponds to regularized linear regression, where the choice of prior determines the type
of regularization. Recall Bayes’ rule

p(✓|D) / p(D|✓)p(✓). (65)

Now instead of maximizing the log-likelihood, l(✓) = log p(D|✓), let us maximize the log posterior, log p(✓|D). Invoking
Eq. (65), the MAP estimator becomes

✓̂MAP ⌘ argmax
✓

log p(D|✓) + log p(✓). (66)
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Now let us examine the two regularizers we introduced earlier. A close inspection reveals that LASSO and Ridge
regressions are both convex problems but only Ridge regression is a strictly convex problem (assuming � > 0). From
convexity theory, this means that we always have a unique solution for Ridge but not necessary for LASSO. In fact, it was
recently shown that under mild conditions, such as demanding general position for columns of X , the LASSO solution is
indeed unique (Tibshirani et al., 2013). Apart from this theoretical characterization, (Zou and Hastie, 2005) introduced
the notion of Elastic Net to retain the desirable properties of both LASSO and Ridge regression, which is now one of the
standard tools for regression analysis and machine learning. We refer to reader to explore this in Notebook 2.

6.6. Bayesian formulation of linear regression

In Section 5, we gave an overview of Bayesian inference and phrased it in the context of learning and uncertainty
quantification. In this section we formulate least squares regression from a Bayesian point of view. We shall see that
regularization in learning will emerge naturally as part of the Bayesian inference procedure.

From the setup of linear regression, the data D used to fit the regression model is generated through y = xTw + ✏.
We often assume that ✏ is a Gaussian noise with mean zero and variance � 2. To connect linear regression to the Bayesian
framework, we often write the model as

p(y|x, ✓) = N (y|µ(x), � 2(x)). (61)

In other words, our regression model is defined by a conditional probability that depends not only on data x but on some
model parameters ✓. For example, if the mean is a linear function of x given by µ = xTw, and the variance is fixed
� 2(x) = � 2, then ✓ = (w, � 2).

In statistics, many problems rely on estimation of some parameters of interest. For example, suppose we are given
the height data of 20 junior students from a regional high school, but what we are interested in is the average height
of all high school juniors in the whole county. It is conceivable that the data we are given are not representative of the
student population as a whole. It is therefore necessary to devise a systematic way to preform reliable estimation. Here
we present the maximum likelihood estimation (MLE), and show that MLE for ✓ is the one that minimizes the mean squared
error (MSE) used in OLS, see Section 6.1.

MLE is defined by maximizing the log-likelihood w.r.t. the parameters ✓:

✓̂ ⌘ argmax
✓

log p(D|✓). (62)

Using the assumption that samples are i.i.d., we can write the log-likelihood as

l(✓) ⌘ log p(D|✓) =

nX

i=1

log p(yi|x(i), ✓). (63)

Note that the conditional dependence of the response variable yi on the independent variable x(i) in the likelihood function
is made explicit since in regression the observed value of data, yi, is predicted based on x(i) using a model that is assumed
to be a probability distribution that depends on unknown parameter ✓. This distribution, when endowed with ✓, can, as
we hope, potentially explain our prediction on yi. By definition, such distribution is the likelihood function we discussed
in Section 5. Note that this is consistent with the formal statistical treatment of regression where the goal is to estimate
the conditional expectation of the dependent variable given the value of the independent variable (sometimes called the
covariate) (Wasserman, 2013). We stress that this notation does not imply x(i) is unknown — it is still part of the observed
data!

Using Eq. (61), we get
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By comparing Eq. (38) and Eq. (64), it is clear that performing least squares is the same as maximizing the log-likelihood
of this model.

What about adding regularization? In Section 5, we introduced the maximum a posteriori probability (MAP) estimate.
Here we show that it actually corresponds to regularized linear regression, where the choice of prior determines the type
of regularization. Recall Bayes’ rule

p(✓|D) / p(D|✓)p(✓). (65)

Now instead of maximizing the log-likelihood, l(✓) = log p(D|✓), let us maximize the log posterior, log p(✓|D). Invoking
Eq. (65), the MAP estimator becomes

✓̂MAP ⌘ argmax
✓

log p(D|✓) + log p(✓). (66)
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Now let us examine the two regularizers we introduced earlier. A close inspection reveals that LASSO and Ridge
regressions are both convex problems but only Ridge regression is a strictly convex problem (assuming � > 0). From
convexity theory, this means that we always have a unique solution for Ridge but not necessary for LASSO. In fact, it was
recently shown that under mild conditions, such as demanding general position for columns of X , the LASSO solution is
indeed unique (Tibshirani et al., 2013). Apart from this theoretical characterization, (Zou and Hastie, 2005) introduced
the notion of Elastic Net to retain the desirable properties of both LASSO and Ridge regression, which is now one of the
standard tools for regression analysis and machine learning. We refer to reader to explore this in Notebook 2.

6.6. Bayesian formulation of linear regression

In Section 5, we gave an overview of Bayesian inference and phrased it in the context of learning and uncertainty
quantification. In this section we formulate least squares regression from a Bayesian point of view. We shall see that
regularization in learning will emerge naturally as part of the Bayesian inference procedure.

From the setup of linear regression, the data D used to fit the regression model is generated through y = xTw + ✏.
We often assume that ✏ is a Gaussian noise with mean zero and variance � 2. To connect linear regression to the Bayesian
framework, we often write the model as

p(y|x, ✓) = N (y|µ(x), � 2(x)). (61)

In other words, our regression model is defined by a conditional probability that depends not only on data x but on some
model parameters ✓. For example, if the mean is a linear function of x given by µ = xTw, and the variance is fixed
� 2(x) = � 2, then ✓ = (w, � 2).

In statistics, many problems rely on estimation of some parameters of interest. For example, suppose we are given
the height data of 20 junior students from a regional high school, but what we are interested in is the average height
of all high school juniors in the whole county. It is conceivable that the data we are given are not representative of the
student population as a whole. It is therefore necessary to devise a systematic way to preform reliable estimation. Here
we present the maximum likelihood estimation (MLE), and show that MLE for ✓ is the one that minimizes the mean squared
error (MSE) used in OLS, see Section 6.1.

MLE is defined by maximizing the log-likelihood w.r.t. the parameters ✓:

✓̂ ⌘ argmax
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Using the assumption that samples are i.i.d., we can write the log-likelihood as

l(✓) ⌘ log p(D|✓) =
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log p(yi|x(i), ✓). (63)

Note that the conditional dependence of the response variable yi on the independent variable x(i) in the likelihood function
is made explicit since in regression the observed value of data, yi, is predicted based on x(i) using a model that is assumed
to be a probability distribution that depends on unknown parameter ✓. This distribution, when endowed with ✓, can, as
we hope, potentially explain our prediction on yi. By definition, such distribution is the likelihood function we discussed
in Section 5. Note that this is consistent with the formal statistical treatment of regression where the goal is to estimate
the conditional expectation of the dependent variable given the value of the independent variable (sometimes called the
covariate) (Wasserman, 2013). We stress that this notation does not imply x(i) is unknown — it is still part of the observed
data!

Using Eq. (61), we get
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By comparing Eq. (38) and Eq. (64), it is clear that performing least squares is the same as maximizing the log-likelihood
of this model.

What about adding regularization? In Section 5, we introduced the maximum a posteriori probability (MAP) estimate.
Here we show that it actually corresponds to regularized linear regression, where the choice of prior determines the type
of regularization. Recall Bayes’ rule

p(✓|D) / p(D|✓)p(✓). (65)

Now instead of maximizing the log-likelihood, l(✓) = log p(D|✓), let us maximize the log posterior, log p(✓|D). Invoking
Eq. (65), the MAP estimator becomes

✓̂MAP ⌘ argmax
✓

log p(D|✓) + log p(✓). (66)
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Now let us examine the two regularizers we introduced earlier. A close inspection reveals that LASSO and Ridge
regressions are both convex problems but only Ridge regression is a strictly convex problem (assuming � > 0). From
convexity theory, this means that we always have a unique solution for Ridge but not necessary for LASSO. In fact, it was
recently shown that under mild conditions, such as demanding general position for columns of X , the LASSO solution is
indeed unique (Tibshirani et al., 2013). Apart from this theoretical characterization, (Zou and Hastie, 2005) introduced
the notion of Elastic Net to retain the desirable properties of both LASSO and Ridge regression, which is now one of the
standard tools for regression analysis and machine learning. We refer to reader to explore this in Notebook 2.

6.6. Bayesian formulation of linear regression

In Section 5, we gave an overview of Bayesian inference and phrased it in the context of learning and uncertainty
quantification. In this section we formulate least squares regression from a Bayesian point of view. We shall see that
regularization in learning will emerge naturally as part of the Bayesian inference procedure.

From the setup of linear regression, the data D used to fit the regression model is generated through y = xTw + ✏.
We often assume that ✏ is a Gaussian noise with mean zero and variance � 2. To connect linear regression to the Bayesian
framework, we often write the model as

p(y|x, ✓) = N (y|µ(x), � 2(x)). (61)

In other words, our regression model is defined by a conditional probability that depends not only on data x but on some
model parameters ✓. For example, if the mean is a linear function of x given by µ = xTw, and the variance is fixed
� 2(x) = � 2, then ✓ = (w, � 2).

In statistics, many problems rely on estimation of some parameters of interest. For example, suppose we are given
the height data of 20 junior students from a regional high school, but what we are interested in is the average height
of all high school juniors in the whole county. It is conceivable that the data we are given are not representative of the
student population as a whole. It is therefore necessary to devise a systematic way to preform reliable estimation. Here
we present the maximum likelihood estimation (MLE), and show that MLE for ✓ is the one that minimizes the mean squared
error (MSE) used in OLS, see Section 6.1.

MLE is defined by maximizing the log-likelihood w.r.t. the parameters ✓:

✓̂ ⌘ argmax
✓

log p(D|✓). (62)

Using the assumption that samples are i.i.d., we can write the log-likelihood as

l(✓) ⌘ log p(D|✓) =

nX

i=1

log p(yi|x(i), ✓). (63)

Note that the conditional dependence of the response variable yi on the independent variable x(i) in the likelihood function
is made explicit since in regression the observed value of data, yi, is predicted based on x(i) using a model that is assumed
to be a probability distribution that depends on unknown parameter ✓. This distribution, when endowed with ✓, can, as
we hope, potentially explain our prediction on yi. By definition, such distribution is the likelihood function we discussed
in Section 5. Note that this is consistent with the formal statistical treatment of regression where the goal is to estimate
the conditional expectation of the dependent variable given the value of the independent variable (sometimes called the
covariate) (Wasserman, 2013). We stress that this notation does not imply x(i) is unknown — it is still part of the observed
data!

Using Eq. (61), we get
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By comparing Eq. (38) and Eq. (64), it is clear that performing least squares is the same as maximizing the log-likelihood
of this model.

What about adding regularization? In Section 5, we introduced the maximum a posteriori probability (MAP) estimate.
Here we show that it actually corresponds to regularized linear regression, where the choice of prior determines the type
of regularization. Recall Bayes’ rule

p(✓|D) / p(D|✓)p(✓). (65)

Now instead of maximizing the log-likelihood, l(✓) = log p(D|✓), let us maximize the log posterior, log p(✓|D). Invoking
Eq. (65), the MAP estimator becomes

✓̂MAP ⌘ argmax
✓

log p(D|✓) + log p(✓). (66)
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5.1. Bayes rule

To solve a problem using Bayesian methods, we have to specify two functions: the likelihood function p(X |✓), which
describes the probability of observing a dataset X for a given value of the unknown parameters ✓, and the prior distribution
p(✓), which describes any knowledge we have about the parameters before we collect the data. Note that the likelihood
should be considered as a function of the parameters ✓ with the data X held fixed. The prior distribution and the likelihood
function are used to compute the posterior distribution p(✓|X) via Bayes’ rule:

p(✓|X) =
p(X |✓)p(✓)R

d✓0 p(X |✓0)p(✓0)
. (34)

The posterior distribution describes our knowledge about the unknown parameter ✓ after observing the data X . In many
cases, it will not be possible to analytically compute the normalizing constant in the denominator of the posterior
distribution, i.e. p(X) =

R
d✓ p(X |✓)p(✓), and Markov Chain Monte Carlo (MCMC) methods are needed to draw random

samples from p(✓|X).
The likelihood function p(X |✓) is a common feature of both classical statistics and Bayesian inference, and is determined

by the model and the measurement noise. Many common statistical procedures such as least-square fitting can be cast as
Maximum Likelihood Estimation (MLE). In MLE, one chooses the parameters ✓̂ that maximize the likelihood (or equivalently
the log-likelihood since log is a monotonic function) of the observed data:

✓̂ = argmax
✓

log p(X |✓). (35)

In other words, in MLE we choose the parameters that maximize the probability of seeing the observed data given our
generative model. MLE is an important concept in both frequentist and Bayesian statistics.

The prior distribution, by contrast, is uniquely Bayesian. There are two general classes of priors: if we do not have
any specialized knowledge about ✓ before we look at the data then we would like to select an uninformative prior that
reflects our ignorance, otherwise we should select an informative prior that accurately reflects the knowledge we have
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R
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called the maximum-a-posteriori or MAP estimate. While the Bayes estimate minimizes the mean-squared error, the MAP
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be small or zero, both have an extra parameter �. This hyperparameter or nuisance variable has to be chosen somehow.
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often requires long Markov Chain Monte Carlo simulations that are computationally intensive. Therefore, it is simpler if
we can find a good value of � using an optimization procedure instead. We will discuss how this is done in practice when
discussing linear regression in Section 6.
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In Section 5.3, we discussed that a common choice for the prior is a Gaussian distribution. Consider the Gaussian prior6
with zero mean and variance ⌧ 2, namely, p(w) =

Q
j N (wj|0, ⌧ 2). Then, we can recast the MAP estimator into
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Note that we dropped constant terms that do not depend on the maximization parameters ✓. The equivalence between
MAP estimation with a Gaussian prior and Ridge regression is established by comparing Eq. (67) and Eq. (44) with
� ⌘ � 2/⌧ 2. We relegate the analogous derivation for LASSO to an exercise in Notebook 3.

6.7. Recap and a general perspective on regularizers

In this section, we explored least squares linear regression with and without regularization. We motivated the need
for regularization due to poor generalization, in particular in the ‘‘high-dimensional limit" (p � n). Instead of showing the
average in-sample and out-of-sample errors for the regularized problem explicitly, we conducted numerical experiments
in Notebook 3 on the diabetes dataset and showed that regularization typically leads to better generalization. Due to the
equivalence between the constrained and penalized form of regularized regression (in LASSO and Ridge, but not generally
true in cases such as L0 penalization), we can regard the regularized regression problem as an un-regularized problem
but on a constrained set of parameters. Since the size of the allowed parameter space (e.g. w 2 Rp when un-regularized
vs. w 2 C ⇢ Rp when regularized) is roughly a proxy for model complexity, solving the regularized problem is in effect
solving the un-regularized problem with a smaller model complexity class. This implies that we are less likely to overfit.

We also showed the connection between using a regularization function and the use of priors in Bayesian inference.
This connection can be used to develop more intuition about why regularization implies we are less likely to overfit the
data: Let us say you are a young Physics student taking a laboratory class where the goal of the experiment is to measure
the behavior of several different pendula and use that to predict the formula (i.e. model) that determines the period of
oscillation. In your investigation you would probably record many things (hopefully including the length and mass!) in
an effort to give yourself the best possible chance of determining the unknown relationship, perhaps writing down the
temperature of the room, any air currents, if the table were vibrating, etc. What you have done is create a high-dimensional
dataset for yourself. However you actually possess an even higher-dimensional dataset than you probably would admit
to yourself. For example you are probably aware of the time of day, that it is a Wednesday, your friend Alice being in
attendance, your friend Bob being absent with a cold, the country in which you are doing the experiment, and the planet
you are on, but you almost assuredly have not written these down in your notebook. Why not? The reason is because you
entered the classroom with strongly held prior beliefs that none of those things affect the physics which takes place in
that room. Even of the things you did write down in an effort to be a careful scientist you probably hold some doubt as
to their importance to your result and what is serving you here is the intuition that probably only a few things matter in
the physics of pendula. Hence again you are approaching the experiment with prior beliefs about how many features you
will need to pay attention to in order to predict what will happen when you swing an unknown pendulum. This example
might seem a bit contrived, but the point is that we live in a high-dimensional world of information and while we have
good intuition about what to write down in our notebook for well-known problems, often in the field of ML we cannot
say with any confidence a priori what the small list of things to write down will be, but we can at least use regularization
to help us enforce that the list not be too long so that we do not end up predicting that the period of a pendulum depends
on Bob having a cold on Wednesdays.

Of course, in both LASSO and Ridge regression there is a parameter � involved. In principle, this hyper-parameter
is usually predetermined, which means that it is not part of the regression process. As we saw in Fig. 15, our learning
performance and solution depends strongly on �, thus it is vital to choose it properly. As we discussed in Section 5.3, one
approach is to assume an uninformative prior on the hyper-parameters, p(�), and average the posterior over all choices of
� following this distribution. However, this comes with a large computational cost. Therefore, it is simpler to choose the
regularization parameter through some optimization procedure.

We would like to emphasize that linear regression can be applied to model non-linear relationship between input and
response. This can be done by replacing the input x with some nonlinear function �(x). Note that doing so preserves the
linearity as a function of the parameters w, since model is defined by the their inner product �T (x)w. This method is
known as basis function expansion (Bishop, 2006; Murphy, 2012).

Recent years have also seen a surge of interest in understanding generalized linear regression models from a
statistical physics perspective. Much of this research has focused on understanding high-dimensional linear regression

6 Indeed, a Gaussian prior is the conjugate prior that gives a Gaussian posterior. For a given likelihood, conjugacy guarantees the preservation of
prior distribution at the posterior level. For example, for a Gaussian (Geometric) likelihood with a Gaussian (Beta) prior, the posterior distribution
is still Gaussian (Beta) distribution.
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Example: 1D Ising Model

• Ensemble of spin configurations and their energy generated from:

• Goal: to learn a model that predicts Ej from the spin configurations.

• Ansatz: pairwise interactions

• This problem can be cast as a linear regression problem:
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Fig. 12. [Adapted from (Friedman et al., 2001)] Comparing LASSO and Ridge regression. The black 45 degree line is the unconstrained estimate for
reference. The estimators are shown by red dashed lines. For LASSO, this corresponds to the soft-thresholding function Eq. (54) while for Ridge
regression the solution is given by Eq. (46).

Fig. 13. [Adapted from (Friedman et al., 2001)] Illustration of LASSO (left) and Ridge regression (right). The blue concentric ovals are the contours
of the regression function while the red shaded regions represent the constraint functions: (left) |w1|+ |w2|  t and (right) w2

1 +w2
2  t . Intuitively,

since the constraint function of LASSO has more protrusions, the ovals tend to intersect the constraint at the vertex, as shown on the left. Since the
vertices correspond to parameter vectors w with only one non-vanishing component, LASSO tends to give sparse solution.

so-called ‘‘subgradient optimality condition" (Boyd and Vandenberghe, 2004; Rockafellar, 2015) in optimization theory to
obtain the solution. To keep the notation simple, we only show the solution assuming X is orthogonal:

ŵLASSO
j (�) = sign(ŵLS

j )(|ŵLS
j | � �)+, for orthogonal X, (54)

where (x)+ denotes the positive part of x and ŵLS
j is the jth component of least squares solution. In Fig. 12, we compare

the Ridge solution Eq. (46) with LASSO solution Eq. (54). As we mentioned above, the Ridge solution is the least squares
solution scaled by a factor of (1 + �). Here LASSO does something conventionally called ‘‘soft-thresholding" (see Fig. 12).
We encourage interested readers to work out the exercises in Notebook 3 to explore what this function does.

How different are the solutions found using LASSO and Ridge regression? In general, LASSO tends to give sparse
solutions, meaning many components of ŵLASSO are zero. An intuitive justification for this result is provided in Fig. 13.
In short, to solve a constrained optimization problem with a fixed regularization strength t � 0, for example, Eq. (44)
and Eq. (53), one first carves out the ‘‘feasible region" specified by the regularizer in the {w1, . . . , wd} space. This means
that a solution ŵ0 is legitimate only if it falls in this region. Then one proceeds by plotting the contours of the least
squares regressors in an increasing manner until the contour touches the feasible region. The point where this occurs is
the solution to our optimization problem (see Fig. 13 for illustration). Loosely speaking, since the L1 regularizer of LASSO
has sharp protrusions (i.e. vertices) along the axes, and because the regressor contours are in the shape of ovals (it is
quadratic in w), their intersection tends to occur at the vertex of the feasibility region, implying the solution vector will
be sparse.

In Notebook 3, we analyze a Diabetes dataset using both LASSO and Ridge regression to predict the diabetes outcome
one year forward (Efron et al., 2004). In Figs. 14, 15, we show the performance of both methods and the solutions ŵLASSO(�),
ŵRidge(�) explicitly. More details of this dataset and our regression implementation can be found in Notebook 3.

6.4. Using linear regression to learn the ising hamiltonian

To gain deeper intuition about what kind of physics problems linear regression allows us to tackle, consider the
following problem of learning the Hamiltonian for the Ising model. Imagine you are given an ensemble of random spin
configurations, and assigned to each state its energy, generated from the 1D Ising model:

H = �J
LX

j=1

SjSj+1 (55)
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Fig. 14. Performance of LASSO and ridge regression on the diabetes dataset measured by the R2 coefficient of determination. The best possible
performance is R2 = 1. See Notebook 3.

Fig. 15. Regularization parameter � affects the weights (features) we learned in both Ridge regression (left) and LASSO regression (right) on the
Diabetes dataset. Curves with different colors correspond to different wi ’s (features). Notice LASSO, unlike Ridge, sets feature weights to zero leading
to sparsity. See Notebook 3.

where J is the nearest-neighbor spin interaction, and Sj 2 {±1} is a spin variable. Let us assume the data was generated
with J = 1. You are handed the dataset D = ({Sj}Lj=1, Ej) without knowledge of what the numbers Ej mean, and the
configuration {Sj}Lj=1 can be interpreted in many ways: the outcome of coin tosses, black-and-white pixels of an image,
the binary representation of integers, etc. Your goal is to learn a model that predicts Ej from the spin configurations.

Without any prior knowledge about the origin of the dataset, physics intuition may suggest to look for a spin model
with pairwise interactions between every pair of variables. That is, we choose the following model class:

Hmodel[Si] = �

LX

j=1

LX

k=1

Jj,kSij S
i
k, (56)

The goal is to determine the interaction matrix Jj,k by applying linear regression on the dataset D. This is a well-defined
problem, since the unknown Jj,k enters linearly into the definition of the Hamiltonian. To this end, we cast the above ansatz
into the more familiar linear-regression form:

Hmodel[Si] = Xi
· J. (57)

The vectors Xi represent all two-body interactions {Sij S
i
k}

L
j,k=1, and the index i runs over the samples in the dataset. To

make the analogy complete, we can also represent the dot product by a single index p = {j, k}, i.e. Xi · J = Xi
pJp. Note

that the regression model does not include the minus sign. In the following, we apply ordinary least squares, Ridge, and
LASSO regression to the problem, and compare their performance.
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Example: 1D Ising Model

• How can we measure performance?

• We want to compare Mean Square Error, LASSO & Ridge regression

• Experiment with the Juypter notebook:
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Fig. 16. Performance of OLS, Ridge and LASSO regression on the Ising model as measured by the R2 coefficient of determination. Optimal performance
is R2 = 1. See Notebook 4.

Fig. 16 shows the R2 of the three regression models.

R2
= 1 �
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���ytruei � ypredi
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n
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pred
i

���
2 . (58)

Let us make a few remarks: (i) the regularization parameter � affects the Ridge and LASSO regressions at scales separated
by a few orders of magnitude. Notice that this is different for the data considered in the diabetes dataset, cf. Fig. 14.
Therefore, it is considered good practice to always check the performance for the given model and data as a function
of �. (ii) While the OLS and Ridge regression test curves are monotonic, the LASSO test curve is not — suggesting an
optimal LASSO regularization parameter is � ⇡ 10�2. At this sweet spot, the Ising interaction weights J contains only
nearest-neighbor terms (as did the model the data was generated from).

Choosing whether to use Ridge or LASSO regression in this case turns out to be similar to fixing gauge degrees of
freedom. Recall that the uniform nearest-neighbor interactions strength Jj,k = J which we used to generate the data,
was set to unity, J = 1. Moreover, Jj,k was NOT defined to be symmetric (we only used the Jj,j+1 but never the Jj,j�1
elements). Fig. 17 shows the matrix representation of the learned weights Jj,k. Interestingly, OLS and Ridge regression
learn nearly symmetric weights J ⇡ �0.5. This is not surprising, since it amounts to taking into account both the Jj,j+1
and the Jj,j�1 terms, and the weights are distributed symmetrically between them. LASSO, on the other hand, tends to break
this symmetry (see matrix elements plots for � = 0.01).5 Thus, we see how different regularization schemes can lead to
learning equivalent models but in different ‘gauges’. Any information we have about the symmetry of the unknown model
that generated the data should be reflected in the definition of the model and the choice of regularization. In addition to
the diabetes dataset in Notebook 3, we encourage the reader to work out Notebook 4 in which linear regression is applied
to the one-dimensional Ising model.

6.5. Convexity of regularizer

In the previous section, we mentioned that the analytical solution of LASSO can be found by invoking its convexity.
In this section, we provide a gentle introduction to convexity theory and highlight a few properties which can help us
understand the differences between LASSO and Ridge regression. First, recall that a set C ✓ Rn is called convex if for any
x, y 2 C and t 2 [0, 1],

tx + (1 � t)y 2 C . (59)

In other words, every line segment joining x, y lies entirely in C . A function f : Rn ! R is called convex if its domain,
dom(f ), is a convex set, and for any x, y 2dom(f ) and t 2 [0, 1] we have

f (tx + (1 � t)y)  tf (x) + (1 � t)f (y), (60)

That is, the function lies on or below the line segment joining its evaluation at x and y. This function f is called strictly
convex if this inequality holds strictly for x 6= y and t 2 (0, 1). Now, it turns out that for convex functions, any local
minimizer is a global minimizer. Algorithmically, this means that in the optimization procedure, as long as we are ‘‘going
down the hill’’ and agree to stop when we reach a minimum, then we have hit the global minimum. In addition to this,

5 Look closer, and you will see that LASSO actually splits the weights rather equally for the periodic boundary condition element at the edges of
the anti-diagonal.

R2 = 1 best performance

R2 < 0 possible
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Example: 1D Ising Model
• Performance depends on hyperparameter . Tuning  is known as 

hyperparameter tuning.

• There can be optimal values for 

• Observed different solutions for Ridge and LASSO.

• Using regularizer can lead to better results.

• Regularization restricts parameter space (less complex model class).
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Fig. 16. Performance of OLS, Ridge and LASSO regression on the Ising model as measured by the R2 coefficient of determination. Optimal performance
is R2 = 1. See Notebook 4.

Fig. 16 shows the R2 of the three regression models.
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Let us make a few remarks: (i) the regularization parameter � affects the Ridge and LASSO regressions at scales separated
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learn nearly symmetric weights J ⇡ �0.5. This is not surprising, since it amounts to taking into account both the Jj,j+1
and the Jj,j�1 terms, and the weights are distributed symmetrically between them. LASSO, on the other hand, tends to break
this symmetry (see matrix elements plots for � = 0.01).5 Thus, we see how different regularization schemes can lead to
learning equivalent models but in different ‘gauges’. Any information we have about the symmetry of the unknown model
that generated the data should be reflected in the definition of the model and the choice of regularization. In addition to
the diabetes dataset in Notebook 3, we encourage the reader to work out Notebook 4 in which linear regression is applied
to the one-dimensional Ising model.

6.5. Convexity of regularizer

In the previous section, we mentioned that the analytical solution of LASSO can be found by invoking its convexity.
In this section, we provide a gentle introduction to convexity theory and highlight a few properties which can help us
understand the differences between LASSO and Ridge regression. First, recall that a set C ✓ Rn is called convex if for any
x, y 2 C and t 2 [0, 1],

tx + (1 � t)y 2 C . (59)

In other words, every line segment joining x, y lies entirely in C . A function f : Rn ! R is called convex if its domain,
dom(f ), is a convex set, and for any x, y 2dom(f ) and t 2 [0, 1] we have

f (tx + (1 � t)y)  tf (x) + (1 � t)f (y), (60)

That is, the function lies on or below the line segment joining its evaluation at x and y. This function f is called strictly
convex if this inequality holds strictly for x 6= y and t 2 (0, 1). Now, it turns out that for convex functions, any local
minimizer is a global minimizer. Algorithmically, this means that in the optimization procedure, as long as we are ‘‘going
down the hill’’ and agree to stop when we reach a minimum, then we have hit the global minimum. In addition to this,

5 Look closer, and you will see that LASSO actually splits the weights rather equally for the periodic boundary condition element at the edges of
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Summary

• Linear regression 

• Regularization (Ridge, LASSO) 

• MLE 

• MAP 

• Relation of MLE and MAP with Least/Square and Ridge regression 

• Linear regression will be replaced by more complicated/non-linear models 

• Regression on the 1D Ising model 


