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Recap of Lecture 3

What is Gradient Descent?

Comparing gradient descent vs Newton’s method
Limitations of Gradient Descent

Stochastic Gradient Descent

How can it be modified? E.g. adding momentum

Second order methods (RMSProp and ADAM)



Outline for today

e Linear Regression

e |east Square regression Regularization
* Ridge regression

e Lasso regression

e MLE and MAP

e Linear Regression on 1D Ising model

References: 1803.08823, chapter 5 and 7 Goodfellow et al.



Linear Regression



Setting up the Problem

e (Given a dataset:
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Setting up the Problem

The function f(x'; @, . ) is never known to us explicitly. For linear
regression, we assume:

yi=f (x) € = aA)tTrueX(i) €

Replace X" by p(x¥) and @ ?x¥ by @ ¢p(x?): basis function expansion.
Goal: find g(X(i); @) known as predictor which best approximates 7.

For later purposes, define the L¥ norm (1 < k € Z) of a vector
X = (X[, ...,X;) € R4 as

1/k
k k k
IxIle= (1 L+ )



Least Square Regression

Ordinary least squares linear regression (OLS):

I

min || Xw —y||§: min Y (w'x? — y;)2.
weRP weRP 4 ]
1=

The solution denoted by #;s = argmin||Xw — y||3, can be obtained by
differentiation: weRP

0
0=—(X,

P Wi — Y i)(Xika)k - Yi) = 2(Xij0)j — )’i)Xim

= s = X'X)'XTy. (if X'X is invertible)

if rank(X) = p, X! X is invertible and @, ¢ is unique.

if rank(X) < p, X' X is singular, and @; ¢ has infinitely many solutions:

@y + n where Xn =0  — pick one solution



OLS Performance

One can show (experiment with the Juypter notebooks):

Ein 262(1—1—?)
n

Eour = o (1—|‘ I—))
n

Average generalization error:

- - D
|Ein — Eout| = 20’25

If p > n (higher dim. data), generalization error is very large meaning
that the model is not learning.

Even if p & n, still may not learn well due to the intrinsic noise.

Can we do better? — Regularization



Ridge Regression

 Add L2 norm of the parameter vector as penalty in loss function:

Ridge(h) = argmin (|IXw — y| 2+ w||2).

weRP

A . 2
& pge(t) = argmin || Xw —y]}3.
weRP: ||w||%§t

 Regularizer: effectively constraining the magnitude of parameters.
e Solving this constrained minimization problem by differentiation:
0 =2(X,w; — y)X;,, + 24w,

A~ _ w
— wRidge()\) — (XTX + )‘-Ipxp) 1XTy = =

orthogonal X



Ridge Regression

What is the relation between yg;;,, and y; ¢?

Singular value decomposition (SVD):

U € R™P and V € RP*P

X = UDV! where
D € RPXP :diag(d1, do, ..., Clp)

U and V are (semi)-orthogonal matrices:
VIV=VV!i =1, butonly U'U=1 since p <n

The diagonal values of D:

d>dy>...2d,>0

X'is singular if at least one d; > 0.



Ridge Regression

 Recast the Ridge estimator:
ﬁ’Ridge — V(Dz T )\I)_]DUT.V

 The Ridge predictor is then:

y Ridge — X ﬁ’Ridge Vs = X g
. 2 —1 T
d-
. J T
= U1d2+AU;jy = UUTy
=1 J
< UU'y

« Both regressions project y to the column space of X. Ridge
regression shrinks each basis component by a factor of dj2/ (a"].2

A).



LASSO Regression

 Add L' norm of the parameter vector as penalty in loss function:

Wiasso(A) = argmin|[Xw — y||5+A||w]|;

weRP

= Wiasso(t) = argmin || Xw — y||5

weRP: [|w[[y <t

* The L' regularizer is not everywhere differentiable so analytic
solution is harder, but LASSO is a convex problem (= optimization).

* For orthogonal X:

“soft-thresholding”

J J

LASSO Ridge

y 1

;0(h) = sign(ip)(1W;7] — 1)+

scaled by
14+ A



LASSO vs Ridge

LASSO Ridge

LASSO gives sparse solutions: many components of @; 4 are zero.



Bayesian Formulation of Linear Regression



Bayesian Formulation

Formulate least square regression from a Bayesian point of view.
Regularization corresponds to a choice of prior.

A regression model is defined by a conditional probability:
pyIx. 0) = N(y|u(x), o°(x)).

For linear regression:

n=xw o*(x) = 0*, then 0 = (w, 0%).

Maximum likelihood estimation (MLE) for @ is the one that
minimizes the mean square error used in OLS.



Bayesian Formulation

 Maximizing the log likelihood:
0 = arg mglx log p(D|0)

 Assuming that the samples are i.i.d.:

1(0) = —L (y,- — wTa’c("))2 — glog (27102)

=1

= ||Xw y||2+ const.



Maximum a Posteriori Probability (MAP)

Bayes’ rule:
(X 16)p(6 )

p(0|X

MAP amounts to maximizing the log posteriori:

9MAP = arg meax log p(D|0) + log p().
Consider a Gaussian distribution for the prior:  p(w) = [T, M(wjl0, 72)

Ridge regression “=" Putting Gaussian prior on weights:

n 1
Ovap = argmax | ——— (y — wix? Zw j|

0 202 4

1
= arg max —FHXw J’||z——||w||2]

with hyperparameter A in the regularizer corresponds to 1 = ¢2/7°:



Example: 1D Ising Model

Ensemble of spin configurations and their energy generated from:

H = —]ZSjSH—l 5;i € {£1} = ({5 }, 1 Ei)
j=1

Goal: to learn a model that predicts E; from the spin configurations.

Ansatz: pairwise interactions

L L
Hiodel [Si] — = Z Z]j,ksfslia

j=1 k=1

This problem can be cast as a linear regression problem:

Hmodel[si] — Xi J

\

{S Sk j, k=1



Example: 1D Ising Model

* How can we measure performance?

2
true pred

yrue _ y! R*=1 best performance

D i

n true 1 n pred
Do i = n doii1Yi

2 _
RF=1-— 5 -

R?> <0 possible

 We want to compare Mean Square Error, LASSO & Ridge regression

 Experiment with the Juypter notebook:

https://physics.bu.edu/%7Epankajm/MLnotebooks.html



Example: 1D Ising Model

Performance depends on hyperparameter A. Tuning 4 is known as
hyperparameter tuning.

There can be optimal values for A

Observed different solutions for Ridge and LASSO.

Using regularizer can lead to better results.

Regularization restricts parameter space (less complex model class).
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Summary

Linear regression

Regularization (Ridge, LASSO)

MLE

MAP

Relation of MLE and MAP with Least/Square and Ridge regression

Linear regression will be replaced by more complicated/non-linear models

Regression on the 1D Ising model



