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Recap of Lecture 4

• Linear regression 

• Regularization (Ridge, LASSO) 

• MLE 

• MAP 

• Relation of MLE and MAP with Least/Square and Ridge regression 

• Linear regression will be replaced by more complicated/non-linear models 

• Regression on the 1D Ising model 



Outline for today

• Logistic classification (binary classification) 

• Binary cross-entropy

• Multi-class classification 

• MNIST
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Logistic Regression



Logistic Regression

• Discrete variables and not continuous output, determine categories (cat 
or dog, ordered or disordered phase, SUSY or background). 

• Start with binary classification, will generalize later to multi-class.

• Data labels for M classes:

• Task: predict correct labels/features from input design matrix:

• Backbone of modern supervised deep learning models.

m ∈ {0,…, M − 1}
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Fig. 18. Pictorial representation of four data categories labeled by the integers 0 through 3 (above), or by one-hot vectors with binary inputs (below).

and compressed sensing (Donoho, 2006) (see (Advani et al., 2013; Zdeborová and Krzakala, 2016) for accessible reviews
for physicists). On a technical level, this research imports and extends the machinery of spin glass physics (replica method,
cavity method, and message passing) to analyze high-dimensional linear models (Advani and Ganguli, 2016; Fisher and
Mehta, 2015a,b; Krzakala et al., 2014, 2012a,b; Ramezanali et al., 2015; Zdeborová and Krzakala, 2016). This is a rich
area of activity at the intersection of physics, computer science, information theory, and machine learning and interested
readers are encouraged to consult the literature for further information (see also (Mezard and Montanari, 2009)).

7. Logistic regression

So far we have focused on learning from datasets for which there is a ‘‘continuous’’ output. For example, in linear
regression we were concerned with learning the coefficients of a polynomial to predict the response of a continuous
variable yi on unseen data based on its independent variables xi. However, a wide variety of problems, such as
classification, are concerned with outcomes taking the form of discrete variables (i.e. categories). For example, we may
want to detect if there is a cat or a dog in an image. Or given a spin configuration of, say, the 2D Ising model, we
would like to identify its phase (e.g. ordered/disordered). In this section, we introduce logistic regression which deals
with binary, dichotomous outcomes (e.g. True or False, Success or Failure, etc.), see Fig. 19. We encourage the reader to
use the opportunity to build their intuition about the inner workings of logistic regression, as this will prove valuable
later on in the study of modern supervised Deep Learning models (see Section 9).

This section is structured as follows: first, we define logistic regression and derive its corresponding cost function (the
cross entropy) using a Bayesian approach, and discuss its minimization. Then, we generalize logistic regression to the case
of multiple categories which is called SoftMax regression. We demonstrate how to apply logistic regression using three
different problems: (i) classifying phases of the 2D Ising model, (ii) learning features in the SUSY dataset, and (iii) MNIST
handwritten digit classification.

Throughout this section, we consider the case where the dependent variables yi 2 Z are discrete and only take values
from m = 0, . . . ,M � 1 (which enumerate the M classes), see Fig. 18. The goal is to predict the output classes from the
design matrix X 2 Rn⇥p made of n samples, each of which bears p features. The primary goal is to identify the classes to
which new unseen samples belong.

Before delving into the details of logistic regression, it is helpful to consider a slightly simpler classifier: a linear
classifier that categorizes examples using a weighted linear-combination of the features and an additive offset:

si = xTi w + b0 ⌘ xTi w, (68)

where we use the short-hand notation xi = (1, xi) and w = (b0, w). This function takes values on the entire real axis. In
the case of logistic regression, however, the labels yi are discrete variables. One simple way to get a discrete output is
to have sign functions that map the output of a linear regressor to {0, 1}, � (si) = sign(si) = 1 if si � 0 and 0 otherwise.
Indeed, this is commonly known as the ‘‘perceptron’’ in the machine learning literature.

7.1. The cross-entropy as a cost function for logistic regression

The perceptron is an example of a ‘‘hard classification’’: each datapoint is assigned to a category (i.e. yi = 0 or yi = 1).
Even though the perceptron is an extremely simple model, it is favorable in many cases (e.g. when dealing with noisy
data) to have a ‘‘soft’’ classifier that outputs the probability of a given category. For example, given xi, the classifier returns
the probability of being in category m. One such function is the logistic (or sigmoid) function:

� (s) =
1

1 + e�s . (69)

Note that 1 � � (s) = � (�s), which will be useful shortly. In many cases, it is favorable to work with a ‘‘soft’’ classifier.
Logistic regression is the canonical example of a soft classifier. In logistic regression, the probability that a data point

xi belongs to a category yi = {0, 1} is given by

P(yi = 1|xi, ✓) =
1

1 + e�xTi ✓
,

n samples, p features



Linear Classifier

• Categorize data using a weighted linear-combination of features and an 
additive constant:

• Map output of a linear regression to 

• Perceptron is not differentiable (hard to train via gradient descent).
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7.1. The cross-entropy as a cost function for logistic regression

The perceptron is an example of a ‘‘hard classification’’: each datapoint is assigned to a category (i.e. yi = 0 or yi = 1).
Even though the perceptron is an extremely simple model, it is favorable in many cases (e.g. when dealing with noisy
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1
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Logistic regression is the canonical example of a soft classifier. In logistic regression, the probability that a data point

xi belongs to a category yi = {0, 1} is given by

P(yi = 1|xi, ✓) =
1

1 + e�xTi ✓
,

short-hand

σ(si) = 1 if si ≥ 0 and 0 otherwise

known as perceptron in the ML literature

σ(si)

si



Sigmoid Function
• Soft classifier that is differentiable (allows for training). Instead of 

discrete output, the classifier returns the probability in a category. 

• One such function is the logistic (or sigmoid) function:

• The sigmoid function is differentiable, and satisfies some useful 
properties:

1 − σ(s) = σ(−s)

σ′ (s) = σ(s)(1 − σ(s))
σ′ (s) = σ′ (−s)
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variable yi on unseen data based on its independent variables xi. However, a wide variety of problems, such as
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want to detect if there is a cat or a dog in an image. Or given a spin configuration of, say, the 2D Ising model, we
would like to identify its phase (e.g. ordered/disordered). In this section, we introduce logistic regression which deals
with binary, dichotomous outcomes (e.g. True or False, Success or Failure, etc.), see Fig. 19. We encourage the reader to
use the opportunity to build their intuition about the inner workings of logistic regression, as this will prove valuable
later on in the study of modern supervised Deep Learning models (see Section 9).

This section is structured as follows: first, we define logistic regression and derive its corresponding cost function (the
cross entropy) using a Bayesian approach, and discuss its minimization. Then, we generalize logistic regression to the case
of multiple categories which is called SoftMax regression. We demonstrate how to apply logistic regression using three
different problems: (i) classifying phases of the 2D Ising model, (ii) learning features in the SUSY dataset, and (iii) MNIST
handwritten digit classification.

Throughout this section, we consider the case where the dependent variables yi 2 Z are discrete and only take values
from m = 0, . . . ,M � 1 (which enumerate the M classes), see Fig. 18. The goal is to predict the output classes from the
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classifier that categorizes examples using a weighted linear-combination of the features and an additive offset:

si = xTi w + b0 ⌘ xTi w, (68)

where we use the short-hand notation xi = (1, xi) and w = (b0, w). This function takes values on the entire real axis. In
the case of logistic regression, however, the labels yi are discrete variables. One simple way to get a discrete output is
to have sign functions that map the output of a linear regressor to {0, 1}, � (si) = sign(si) = 1 if si � 0 and 0 otherwise.
Indeed, this is commonly known as the ‘‘perceptron’’ in the machine learning literature.

7.1. The cross-entropy as a cost function for logistic regression

The perceptron is an example of a ‘‘hard classification’’: each datapoint is assigned to a category (i.e. yi = 0 or yi = 1).
Even though the perceptron is an extremely simple model, it is favorable in many cases (e.g. when dealing with noisy
data) to have a ‘‘soft’’ classifier that outputs the probability of a given category. For example, given xi, the classifier returns
the probability of being in category m. One such function is the logistic (or sigmoid) function:

� (s) =
1

1 + e�s . (69)

Note that 1 � � (s) = � (�s), which will be useful shortly. In many cases, it is favorable to work with a ‘‘soft’’ classifier.
Logistic regression is the canonical example of a soft classifier. In logistic regression, the probability that a data point

xi belongs to a category yi = {0, 1} is given by

P(yi = 1|xi, ✓) =
1

1 + e�xTi ✓
,



Soft Classifier

• Probability that a data point belongs to a category :

• Motivated by the two-state system in statistical mechanics:

• In terms of the sigmoid function:

yi = {0,1}
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which new unseen samples belong.

Before delving into the details of logistic regression, it is helpful to consider a slightly simpler classifier: a linear
classifier that categorizes examples using a weighted linear-combination of the features and an additive offset:

si = xTi w + b0 ⌘ xTi w, (68)

where we use the short-hand notation xi = (1, xi) and w = (b0, w). This function takes values on the entire real axis. In
the case of logistic regression, however, the labels yi are discrete variables. One simple way to get a discrete output is
to have sign functions that map the output of a linear regressor to {0, 1}, � (si) = sign(si) = 1 if si � 0 and 0 otherwise.
Indeed, this is commonly known as the ‘‘perceptron’’ in the machine learning literature.

7.1. The cross-entropy as a cost function for logistic regression

The perceptron is an example of a ‘‘hard classification’’: each datapoint is assigned to a category (i.e. yi = 0 or yi = 1).
Even though the perceptron is an extremely simple model, it is favorable in many cases (e.g. when dealing with noisy
data) to have a ‘‘soft’’ classifier that outputs the probability of a given category. For example, given xi, the classifier returns
the probability of being in category m. One such function is the logistic (or sigmoid) function:

� (s) =
1

1 + e�s . (69)

Note that 1 � � (s) = � (�s), which will be useful shortly. In many cases, it is favorable to work with a ‘‘soft’’ classifier.
Logistic regression is the canonical example of a soft classifier. In logistic regression, the probability that a data point

xi belongs to a category yi = {0, 1} is given by
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1

1 + e�xTi ✓
,
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Fig. 19. Classifying data in the simplest case of only two categories, labeled ‘‘noise’’ and ‘‘signal’’ (or ‘‘cats’’ and ‘‘dogs’’), is the subject of Logistic
Regression.

P(yi = 0|xi, ✓) = 1 � P(yi = 1|xi, ✓), (70)

where ✓ = w are the weights we wish to learn from the data. To gain some intuition for these equations, consider a
collection of non-interacting two-state systems coupled to a thermal bath (e.g. a collection of atoms that can be in two
states). Furthermore, denote the state of system i by a binary variable: yi 2 {0, 1}. From elementary statistical mechanics,
we know that if the two states have energies ✏0 and ✏1 the probability for finding the system in a state yi is:

P(yi = 1) =
e��✏0

e��✏0 + e��✏1
=

1
1 + e���✏

,

P(yi = 1) = 1 � P(yi = 0). (71)

Notice that in these expressions, as is often the case in physics, only energy differences are observable. If the difference
in energies between two states is given by �✏ = xTi w, we recover the expressions for logistic regression. We shall use
this mapping between partition functions and classification to generalize the logistic regressor to SoftMax regression in
Section 7.4. Notice that in terms of the logistic function, we can write

P(yi = 1) = � (xTi w) = 1 � P(yi = 0). (72)

We now define the cost function for logistic regression using Maximum Likelihood Estimation (MLE). Recall, that in
MLE we choose parameters to maximize the probability of seeing the observed data. Consider a dataset D = {(yi, xi)}
with binary labels yi 2 {0, 1} from which the data points are drawn independently. The likelihood of observing the data
under our model is just:

P(D|w) =

nY

i=1

⇥
� (xTi w)

⇤yi ⇥1 � � (xTi w)
⇤1�yi (73)

from which we can readily compute the log-likelihood:

l(w) =

nX

i=1

yi log � (xTi w) + (1 � yi) log
⇥
1 � � (xTi w)

⇤
. (74)

The maximum likelihood estimator is defined as the set of parameters that maximize the log-likelihood:

ŵ = argmax
✓

nX

i=1

yi log � (xTi w) + (1 � yi) log
⇥
1 � � (xTi w)

⇤
. (75)

Since the cost (error) function is just the negative log-likelihood, for logistic regression we find

C(w) = �l(w) (76)

=

nX

i=1

�yi log � (xTi w) � (1 � yi) log
⇥
1 � � (xTi w)

⇤
.

The right-hand side in Eq. (76) is known in statistics as the cross entropy.
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We now define the cost function for logistic regression using Maximum Likelihood Estimation (MLE). Recall, that in
MLE we choose parameters to maximize the probability of seeing the observed data. Consider a dataset D = {(yi, xi)}
with binary labels yi 2 {0, 1} from which the data points are drawn independently. The likelihood of observing the data
under our model is just:

P(D|w) =
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i=1

⇥
� (xTi w)

⇤yi ⇥1 � � (xTi w)
⇤1�yi (73)

from which we can readily compute the log-likelihood:

l(w) =

nX

i=1

yi log � (xTi w) + (1 � yi) log
⇥
1 � � (xTi w)

⇤
. (74)

The maximum likelihood estimator is defined as the set of parameters that maximize the log-likelihood:

ŵ = argmax
✓

nX

i=1

yi log � (xTi w) + (1 � yi) log
⇥
1 � � (xTi w)

⇤
. (75)

Since the cost (error) function is just the negative log-likelihood, for logistic regression we find

C(w) = �l(w) (76)

=

nX

i=1

�yi log � (xTi w) � (1 � yi) log
⇥
1 � � (xTi w)

⇤
.

The right-hand side in Eq. (76) is known in statistics as the cross entropy.

only energy difference

is observable
Δϵ = ϵ1 − ϵ0
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Fig. 19. Classifying data in the simplest case of only two categories, labeled ‘‘noise’’ and ‘‘signal’’ (or ‘‘cats’’ and ‘‘dogs’’), is the subject of Logistic
Regression.
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where ✓ = w are the weights we wish to learn from the data. To gain some intuition for these equations, consider a
collection of non-interacting two-state systems coupled to a thermal bath (e.g. a collection of atoms that can be in two
states). Furthermore, denote the state of system i by a binary variable: yi 2 {0, 1}. From elementary statistical mechanics,
we know that if the two states have energies ✏0 and ✏1 the probability for finding the system in a state yi is:
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Section 7.4. Notice that in terms of the logistic function, we can write

P(yi = 1) = � (xTi w) = 1 � P(yi = 0). (72)

We now define the cost function for logistic regression using Maximum Likelihood Estimation (MLE). Recall, that in
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Constructing the Loss Function

• The likelihood of observing the data:

• The log-likelihood:

• Maximum Likelihood Estimation (MLE):

• The cost (error) function:
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ŵ = argmax
✓

nX

i=1

yi log � (xTi w) + (1 � yi) log
⇥
1 � � (xTi w)

⇤
. (75)

Since the cost (error) function is just the negative log-likelihood, for logistic regression we find

C(w) = �l(w) (76)

=

nX

i=1

�yi log � (xTi w) � (1 � yi) log
⇥
1 � � (xTi w)

⇤
.

The right-hand side in Eq. (76) is known in statistics as the cross entropy.

32 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 19. Classifying data in the simplest case of only two categories, labeled ‘‘noise’’ and ‘‘signal’’ (or ‘‘cats’’ and ‘‘dogs’’), is the subject of Logistic
Regression.

P(yi = 0|xi, ✓) = 1 � P(yi = 1|xi, ✓), (70)

where ✓ = w are the weights we wish to learn from the data. To gain some intuition for these equations, consider a
collection of non-interacting two-state systems coupled to a thermal bath (e.g. a collection of atoms that can be in two
states). Furthermore, denote the state of system i by a binary variable: yi 2 {0, 1}. From elementary statistical mechanics,
we know that if the two states have energies ✏0 and ✏1 the probability for finding the system in a state yi is:

P(yi = 1) =
e��✏0

e��✏0 + e��✏1
=

1
1 + e���✏

,

P(yi = 1) = 1 � P(yi = 0). (71)

Notice that in these expressions, as is often the case in physics, only energy differences are observable. If the difference
in energies between two states is given by �✏ = xTi w, we recover the expressions for logistic regression. We shall use
this mapping between partition functions and classification to generalize the logistic regressor to SoftMax regression in
Section 7.4. Notice that in terms of the logistic function, we can write

P(yi = 1) = � (xTi w) = 1 � P(yi = 0). (72)

We now define the cost function for logistic regression using Maximum Likelihood Estimation (MLE). Recall, that in
MLE we choose parameters to maximize the probability of seeing the observed data. Consider a dataset D = {(yi, xi)}
with binary labels yi 2 {0, 1} from which the data points are drawn independently. The likelihood of observing the data
under our model is just:

P(D|w) =

nY

i=1

⇥
� (xTi w)

⇤yi ⇥1 � � (xTi w)
⇤1�yi (73)

from which we can readily compute the log-likelihood:

l(w) =

nX

i=1

yi log � (xTi w) + (1 � yi) log
⇥
1 � � (xTi w)

⇤
. (74)

The maximum likelihood estimator is defined as the set of parameters that maximize the log-likelihood:
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cross entropy



Optimizing the Loss Function

• The cross entropy is a convex function of the weights; any local 
minimizer is a global minimizer.

• The cross entropy is differentiable, can be minimized via SD:

• We can supplement the cross entropy with additional regularizers 
such as L1 and L2 regularization.

• Modifications such as adding stochasticity (e.g., mini-batches) and 
momentum discussed in Lecture 3 also apply.
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Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.



Phases of 2D Ising Model



Phases of the 2D Ising Model

• The Hamiltonian for the 2D Ising Model:

• 2D lattice of L x L spins.

• Periodic boundary conditions.

• Onsager’s exact solution: a phase transition in the thermodynamic 
limit at the critical temperature:
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Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.
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thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

nearest neighbors



Phases of the 2D Ising Model
• Can we train a binary classifier to distinguish between two phases of 

the 2D Ising model?  
 

• We need a dataset, i.e. samples at a given temperature. How do we 
do this? One common way: Monte Carlo Simulations.

• Our binary classifier misses features like contiguous ordered 2D 
domains; such info can be incorporated using deep convoluted 
neural networks (CNNs) and topological data analysis.
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Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.



Phases of the 2D Ising Model

• Generate a dataset for 40x40 grid using MC simulations to prepare 
104 states at every temperature T.

• We know which temperatures the samples are from, and their labels 
(e.g., 0=disordered, 1=ordered).

• What we are doing is called supervised learning.

• Later in the course we will see methods which do not need these 
labels, i.e. unsupervised learning. 

• For physics in practice: supervised learning can teach you how well 
a method is working for a desired task. To do something “new”, we 
usually have to use unsupervised learning. 



Phases of the 2D Ising Model
34 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 21. Accuracy as a function of the regularization parameter � in classifying the phases of the 2D Ising model on the training (blue), test (red),
and critical (green) data. The solid and dashed lines compare the ‘liblinear’ and ‘SGD’ solvers, respectively.

It is well-known that near the critical temperature Tc , the ferromagnetic correlation length diverges, which leads
to, among other things, critical slowing down of the MC algorithm. Perhaps identifying the phases is also harder in
the critical region. With this in mind, consider the following three types of states: ordered (T/J < 2.0), near-critical
(2.0  T/J  2.5) and disordered (T/J > 2.5). We use both ordered and disordered states to train the logistic regressor
and, once the supervised training procedure is complete, we will evaluate the performance of our classification model on
unseen ordered, disordered, and near-critical states.

Here, we deploy the liblinear routine (the default for Scikit’s logistic regression) and stochastic gradient descent (SGD,
see Section 4 for details) to optimize the logistic regression cost function with L2 regularization. We define the accuracy
of the classifier as the percentage of correctly classified data points. Comparing the accuracy on the training and test
data, we can study the degree of overfitting. The first thing to notice in Fig. 21 is the small degree of overfitting, as
suggested by the training (blue) and test (red) accuracy curves being very close to each other. Interestingly, the liblinear
minimizer outperforms SGD on the training and test data, but not on the near-critical data for certain values of the
regularization strength �. Moreover, similar to the linear regression examples, we find that there exists a sweet spot
for the SGD regularization strength � that results in optimal performance of the logistic regressor, at about � ⇠ 10�1.
We might expect that the difficulty of the phase recognition problem depends on the temperature of the queried sample.
Looking at the states in the near-critical region, c.f. Fig. 20, it is no longer easy for a trained human eye to distinguish
between the ferromagnetic and the disordered phases close to Tc . Therefore, it is interesting to also compare the training
and test accuracies to the accuracy of the near-critical state predictions. (Recall that the model is not trained on near-
critical states.) Indeed, the liblinear accuracy is about 7% smaller for the critical states (green curves) compared to the test
data (red line).

Finally, it is important to note that all of Scikit’s logistic regression solvers have in-built regularizers. We did not
emphasize the role of the regularizers in this section, but they are crucial in order to prevent overfitting. We encourage
the interested reader to play with the different regularization types and numerical solvers in Notebook 6 and compare
model performances.

7.3.2. SUSY
In high energy physics experiments, such as the ATLAS and CMS detectors at the CERN LHC, one major hope is the

discovery of new particles. To accomplish this task, physicists attempt to sift through events and classify them as either
a signal of some new physical process or particle, or as a background event from already understood Standard Model
processes. Unfortunately, we do not know for sure what underlying physical process occurred (the only information we
have access to are the final state particles). However, we can attempt to define parts of phase space that will have a high
percentage of signal events. Typically this is done by using a series of simple requirements on the kinematic quantities of
the final state particles, for example having one or more leptons with large amounts of momentum that are transverse
to the beam line (pT ). Instead, here we will use logistic regression in an attempt to find the relative probability that an
event is from a signal or a background event. Rather than using the kinematic quantities of final state particles directly,
we will use the output of our logistic regression to define a part of phase space that is enriched in signal events (see
Jupyter notebookNotebook 5).

The dataset we are using comes from the UC Irvine ML repository and has been produced using Monte Carlo simulations
to contain events with two leptons (electrons or muons) (Baldi et al., 2014). Each event has the value of 18 kinematic
variables (‘‘features’’). The first 8 features are direct measurements of final state particles, in this case the pT , pseudo-
rapidity ⌘, and azimuthal angle � of two leptons in the event and the amount of missing transverse momentum (MET)
together with its azimuthal angle. The last ten features are higher order functions of the first 8 features; these features
are derived by physicists to help discriminate between the two classes. These high-level features can be thought of as

lib linear 
(Schkit)

SGD

Experiment with Juypter Notebook 6:  
https://physics.bu.edu/%7Epankajm/MLnotebooks.html
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SUSY vs SM Background

• Using the dataset from the UC 
Irvine ML repository produced by 
MC simulations to contain events 
with 2 leptons (electrons or muons)

• These events with 2 leptons with 
large  can occur in SUSY 
models or within the SM.

• 18 kinematic variables (“features”) 
are recorded for each event.

• Can train a logistic regressor to 
classify the events into SUSY or 
SM background. 

pT

! stransverse mass MT2: estimating the mass of particles
produced in pairs and decaying semi-invisibly17,18,

! T
Rel: T if DfZp/2, T sin(Df) if Dfop/2, where Df is the

minimum angle between T and a jet or lepton,
! razor quantities b,R and MR (ref. 19),
! super-razor quantities bRþ 1, cos(yRþ 1), DfR

b, MR
D, M

T
R , andffiffiffiffi

ŝR
p

(ref. 20).

See Fig. 6 for distributions of these high-level features for both
signal and background processes.

A data set containing five million simulated collision events is
available for download at archive.ics.uci.edu/ml/datasets/SUSY.

Current approach. Standard techniques in high-energy physics
data analyses include feed-forward neural networks with a single
hidden layer and boosted decision trees. We use the widely-used
TMVA package21, which provides a standardized implementation
of common multivariate learning techniques and an excellent
performance baseline.

Deep learning. We explored the use of DNs as a practical tool for
applications in high-energy physics. Hyper-parameters were
chosen using a subset of the HIGGS data consisting of 2.6 million
training examples and 100,000 validation examples. Due to
computational costs, this optimization was not thorough, but
included combinations of the pre-training methods, network
architectures, initial learning rates and regularization methods
shown in Supplementary Table 3. We selected a five-layer neural
network with 300 hidden units in each layer, a learning rate of
0.05, and a weight decay coefficient of 1# 10$ 5. Pre-training,
extra hidden units and additional hidden layers significantly
increased training time without noticeably increasing perfor-
mance. To facilitate comparison, shallow neural networks were
trained with the same hyper-parameters and the same number of

units per hidden layer. Additional training details are provided in
the Methods section below.

The hyper-parameter optimization was performed using the
full set of HIGGS features. To investigate whether the neural
networks were able to learn the discriminative information
contained in the high-level features, we trained separate classifiers
for each of the three feature sets described above: low-level, high-
level and combined feature sets. For the SUSY benchmark, the
networks were trained with the same hyper-parameters chosen
for the HIGGS, as the data sets have similar characteristics and
the hyper-parameter search is computationally expensive.

Performance. Classifiers were tested on 500,000 simulated
examples generated from the same Monte Carlo procedures as
the training sets. We produced receiver operating characteristic
curves to illustrate the performance of the classifiers. Our primary
metric for comparison is the area under the receiver operating
characteristic curve (AUC), with larger AUC values indicating
higher classification accuracy across a range of threshold choices.

This metric is insightful, as it is directly connected to
classification accuracy, which is the quantity optimized for in
training. In practice, physicists may be interested in other metrics,
such as signal efficiency at some fixed background rejection or
discovery significance as calculated by P-value in the null
hypothesis. We choose AUC as it is a standard in machine
learning, and is closely correlated with the other metrics.
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Figure 5 | Low-level input features for SUSY benchmark. Distribution of
low-level features in simulated samples for the SUSY signal (black) and
background (red) benchmark processes.
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Figure 4 | Diagrams for SUSY benchmark. Example diagrams describing

the signal process involving hypothetical supersymmetric particles w% and

w0 along with charged leptons c% and neutrinos n (a) and the background
process involving W bosons (b). In both cases, the resulting observed
particles are two charged leptons, as neutrinos and w0 escape undetected.
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Fig. 23. ROC curves for a variety of regularization parameters with L2 regularization using TensorFlow (top) or Sci-Kit Learn (bottom).

Fig. 24. Comparison of leading vs. sub-leading lepton pT for signal (blue) and background events (red). Recall that these variables have been scaled
to have a mean of one.

string of length M with only one component of yi being 1 and the rest zero. For example, y i = (1, 0, . . . , 0) means data
the sample xi belongs to class 1,7 cf. Fig. 18. Following the notation in Section 7.1, the probability of xi being in class m0

7 For an alternative mathematical description of the categories, which labels the classes by integers, see http://ufldl.stanford.edu/wiki/index.php/
Softmax_Regression.

Juypter Notebook 5: 
https://physics.bu.edu/%7Epankajm/MLnotebooks.html

https://physics.bu.edu/%7Epankajm/MLnotebooks.html
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Softmax Regression

• Going from 2 labels to M labels.

• Treat the label as a vector , i.e., one hot-encoding of 
labels:

• The probability of being in class m’ is the softmax function:

where  is the -th component of vector .

yi ∈ ℤM
2

yim′ 
≡ {yi}m′ 

m′ y

0 →

1
0
⋅
⋅
⋅
0

1 →

0
1
⋅
⋅
⋅
0

M − 1 →

0
⋅
⋅
⋅
0
1

,
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Fig. 25. A comparison of discrimination power from using logistic regression with only simple kinematic variables (green), logistic regression using
both simple and higher-order kinematic variables (purple), and a cut-based approach that varies the requirements on the leading lepton pT .

is given by

P(yim0 = 1|xi, {wk}
M�1
k=0 ) =

e�xTi wm0

PM�1
m=0 e�xTi wm

, (79)

where yim0 ⌘ [y i]m0 refers to the m0-th component of vector y i. This is known as the SoftMax function. Therefore, the
likelihood of this M-class classifier is simply (cf. Section 7.1):

P(D|{wk}
M�1
k=0 ) =

nY

i=1

M�1Y

m=0

[P(yim = 1|xi,wm)]yim

⇥ [1 � P(yim = 1|xi,wm)]1�yim (80)

from which we can define the cost function in a similar fashion:

C(w) = �

nX

i=1

M�1X

m=0

yim log P(yim = 1|xi,wm)

+ (1 � yim) log (1 � P(yim = 1|xi,wm)) . (81)

As expected, for M = 1, we recover the cross entropy for logistic regression, cf. Eq. (76).

7.5. An example of SoftMax classification: MNIST digit classification

A paradigmatic example of SoftMax regression is to classify handwritten digits from the MNIST dataset. Yann LeCun
and collaborators first collected and processed 70000 handwritten digits, each of which is laid out on a 28 ⇥ 28-pixel grid.
Every pixel assumes one of 256 grayscale values, interpolating between white and black. A representative input sample
is show in Fig. 26.

Since there are 10 categories for the digits 0 through 9, this corresponds to SoftMax regression with M = 10. We
encourage readers to experiment with Notebook 7 to explore SoftMax regression applied to MNIST. We include in Fig. 27
the learned weights wk, where k corresponds to class labels (i.e. digits). We shall come back to SoftMax regression in
Section 9.

8. Combining models

One of the most powerful and widely-applied ideas in modern machine learning is the use of ensemble methods that
combine predictions from multiple, often weak, statistical models to improve predictive performance (Dietterich et al.,
2000). Ensemble methods, such as random forests (Breiman, 2001; Geurts et al., 2006; Ho, 1998), and boosted gradient
trees, such as XGBoost (Chen and Guestrin, 2016; Friedman, 2001), undergird many of the winning entries in data science
competitions such as Kaggle, especially on structured datasets.8 Even in the context of neural networks, see Section 9 it

8 Neural networks generally perform better than ensemble methods on unstructured data, images, and audio.

, …., 



Softmax Regression

• Likelihood of this M-class classifier:

• Cost function:

• Activations (one-hot encoding), can be thought of as activating 
particular cells (e.g. in your brain). 

• Becomes a lot harder for a larger number of classes.
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Fig. 25. A comparison of discrimination power from using logistic regression with only simple kinematic variables (green), logistic regression using
both simple and higher-order kinematic variables (purple), and a cut-based approach that varies the requirements on the leading lepton pT .
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As expected, for M = 1, we recover the cross entropy for logistic regression, cf. Eq. (76).

7.5. An example of SoftMax classification: MNIST digit classification

A paradigmatic example of SoftMax regression is to classify handwritten digits from the MNIST dataset. Yann LeCun
and collaborators first collected and processed 70000 handwritten digits, each of which is laid out on a 28 ⇥ 28-pixel grid.
Every pixel assumes one of 256 grayscale values, interpolating between white and black. A representative input sample
is show in Fig. 26.

Since there are 10 categories for the digits 0 through 9, this corresponds to SoftMax regression with M = 10. We
encourage readers to experiment with Notebook 7 to explore SoftMax regression applied to MNIST. We include in Fig. 27
the learned weights wk, where k corresponds to class labels (i.e. digits). We shall come back to SoftMax regression in
Section 9.

8. Combining models

One of the most powerful and widely-applied ideas in modern machine learning is the use of ensemble methods that
combine predictions from multiple, often weak, statistical models to improve predictive performance (Dietterich et al.,
2000). Ensemble methods, such as random forests (Breiman, 2001; Geurts et al., 2006; Ho, 1998), and boosted gradient
trees, such as XGBoost (Chen and Guestrin, 2016; Friedman, 2001), undergird many of the winning entries in data science
competitions such as Kaggle, especially on structured datasets.8 Even in the context of neural networks, see Section 9 it

8 Neural networks generally perform better than ensemble methods on unstructured data, images, and audio.
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Fig. 25. A comparison of discrimination power from using logistic regression with only simple kinematic variables (green), logistic regression using
both simple and higher-order kinematic variables (purple), and a cut-based approach that varies the requirements on the leading lepton pT .
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where yim0 ⌘ [y i]m0 refers to the m0-th component of vector y i. This is known as the SoftMax function. Therefore, the
likelihood of this M-class classifier is simply (cf. Section 7.1):
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As expected, for M = 1, we recover the cross entropy for logistic regression, cf. Eq. (76).

7.5. An example of SoftMax classification: MNIST digit classification

A paradigmatic example of SoftMax regression is to classify handwritten digits from the MNIST dataset. Yann LeCun
and collaborators first collected and processed 70000 handwritten digits, each of which is laid out on a 28 ⇥ 28-pixel grid.
Every pixel assumes one of 256 grayscale values, interpolating between white and black. A representative input sample
is show in Fig. 26.

Since there are 10 categories for the digits 0 through 9, this corresponds to SoftMax regression with M = 10. We
encourage readers to experiment with Notebook 7 to explore SoftMax regression applied to MNIST. We include in Fig. 27
the learned weights wk, where k corresponds to class labels (i.e. digits). We shall come back to SoftMax regression in
Section 9.

8. Combining models

One of the most powerful and widely-applied ideas in modern machine learning is the use of ensemble methods that
combine predictions from multiple, often weak, statistical models to improve predictive performance (Dietterich et al.,
2000). Ensemble methods, such as random forests (Breiman, 2001; Geurts et al., 2006; Ho, 1998), and boosted gradient
trees, such as XGBoost (Chen and Guestrin, 2016; Friedman, 2001), undergird many of the winning entries in data science
competitions such as Kaggle, especially on structured datasets.8 Even in the context of neural networks, see Section 9 it

8 Neural networks generally perform better than ensemble methods on unstructured data, images, and audio.
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MNIST

• Classifying digits ⇒ M=10 categories

• MNIST = Dataset of handwritten digits, 
28x28=784 pixel grid, each assumes 256 
grayscale values, interpolating between 
white and black.

Yann LeCun, Corinna Cortes, Christopher Burges 

http://yann.lecun.com/exdb/mnist/

• 60,000 images: 50,000 for training, 10,000 
for testing 

Experiment with Notebook 7 using softmax:  
https://physics.bu.edu/%7Epankajm/MLnotebooks.html



Summary

• Binary classification Logistic sigmoid 

• Binary cross-entropy as loss function 

• Multi-class classification 

• 3 Examples: Phase classification 2D Ising, SUSY datasets, 
handwritten digits MNIST. 


