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Lecture 5: Logistic Regression



5 Physics n ML

1} ’ a virtual hub at the interface of theoretical physics and deep learning.

10 Physics meets ML to solve cosmological inference

Feb 2021 Ben Wandelt, Institut d'Astrophysique de Paris / Institut Lagrange, Sorbonne University
and Center for Computational Astrophysics, Flatiron Institute, New York, 12:00 EDT

Abstract: The goal of cosmological inference is to learn about the origin, composition, evolution,
and fate of the cosmos from all accessible sources of astronomical data, such as the cosmic
microwave background, galaxy surveys, or electromagnetic and gravitational wave transients.
Traditionally, the field has progressed by designing and modeling intuitive summaries of the data,
such as n-point correlations. This traditional approach has a number of risks and limitations: how
do we know if we computed the most informative statistics? Did we forget any summaries that
would have provided additional information or break parameter degeneracies? Did we take into
account all the ways the madel is affecting the data? To be feasible, the traditional approach
imposes approximations on the statistical modeling (e.g. the likelihood form) and on the physical
modeling. | will discuss a new mode of cosmological inference: simulation-based, full-physics
modeling, made feasible through multiple advances in 1) machine-learning, 2) in the way we design
and run simulations of cosmological observables, and 3) in how we compare models to data. The
goal is to use current and next generation data to reconstruct the cosmological initial conditions
and constrain cosmological physics much more completely than has been feasible in the past. |
will discuss current status, and ways to meet the new challenges inherent in this approach,
including robustness to model misspecification.



Recap of Lecture 4

Linear regression

Regularization (Ridge, LASSO)

MLE

MAP

Relation of MLE and MAP with Least/Square and Ridge regression

Linear regression will be replaced by more complicated/non-linear models

Regression on the 1D Ising model



Outline for today

e Logistic classification (binary classification)
* Binary cross-entropy
e Multi-class classification

e MNIST

References: 1803.08823



Logistic Regression



Logistic Regression
Discrete variables and not continuous output, determine categories (cat
or dog, ordered or disordered phase, SUSY or background).

Start with binary classification, will generalize later to multi-class.

Data labels for M classes:

me {0,....M—1}
Task: predict correct labels/features from input design matrix:

X € R™P n samples, p features

Backbone of modern supervised deep learning models.



Linear Classifier

e Categorize data using a weighted linear-combination of features and an

itiv nstant:
additive consta short-hand

Si=X w+by =X W, x; = (1, %;) and w = (by, w).

e Map output of a linear regression to

o(s;) A

| o(s;) =11t 5; > 0 and O otherwise

: known as perceptron in the ML literature

e Perceptron is not differentiable (hard to train via gradient descent).



Sigmoid Function

e Soft classifier that is differentiable (allows for training). Instead of
discrete output, the classifier returns the probability in a category.

* One such function is the logistic (or sigmoid) function:

Logistic Sigmoid Fu

. 1
03] 1 o(s) = :

/ ) 1+e™
0 . . = -

-10 5 0

* The sigmoid function is differentiable, and satisfies some useful

properties: 1 —0o(s) = o(—s)

6'(s) = o(s)(1 = o(s))

o'(s) = o'(—s)



Soft Classifier

o Probability that a data point belongs to a category y; = {0,1}:

1
1+ e‘xiTof

P(y; = 1]x;,0) =

P(y; =0l|x;,0) = 1 — P(y; = 1|x;, 0),

* Motivated by the two-state system in statistical mechanics:

Py, =0) = e Feo _ 1 only energy difference
Yi= B e—Beo + e—Bei o 1 4+ e—FAe ’ .AG =€, — €
P(yi=1)=1—-P(y; =0). is observable

* In terms of the sigmoid function:

Py = 1) = o(x;w) = 1~ P(y; = 0).



Constructing the Loss Function

* The likelihood of observing the data:

I

P(DIw) = [ [[ox{w)]" [1 — o(x[w)]

=1

* The log-likelihood:

[(w) =) "yilogo(xw)+ (1 —y;)log[1— o(x{w)].
i=1

e Maximum Likelihood Estimation (MLE):

n
W = arg max Zyi logo(x{ W)+ (1 —y;)log[1—o(x/w)]|
-

e The cost (error) function:
c(w) = —I(w)

=Y —yilogo(x{w) — (1 —y)log[1 - o(x{w)]. cross entropy
i=1



Optimizing the Loss Function

The cross entropy is a convex function of the weights; any local
minimizer is a global minimizer.

The cross entropy is differentiable, can be minimized via SD:

n

0=vcw) =) [ox{w)—y]xi

i=1

We can supplement the cross entropy with additional regularizers
such as L' and L2 regularization.

Modifications such as adding stochasticity (e.g., mini-batches) and
momentum discussed in Lecture 3 also apply.



Phases of 2D Ising Model



Phases of the 2D Ising Model

The Hamiltonian for the 2D Ising Model:

H=-]) S, S; € {£1},
(1)

nearest neighbors

2D lattice of L x L spins.
Periodic boundary conditions.

Onsager’s exact solution: a phase transition in the thermodynamic
limit at the critical temperature:

T./] = 2/log(1+ /2) ~ 2.26



Phases of the 2D Ising Model

 Can we train a binary classifier to distinguish between two phases of
the 2D Ising model?

ordered phase crltlcal reglon disordered phase
0

10
20

30

0 20

* We need a dataset, i.e. samples at a given temperature. How do we
do this? One common way: Monte Carlo Simulations.

e Our binary classifier misses features like contiguous ordered 2D
domains; such info can be incorporated using deep convoluted
neural networks (CNNs) and topological data analysis.



Phases of the 2D Ising Model

Generate a dataset for 40x40 grid using MC simulations to prepare
104 states at every temperature T.

We know which temperatures the samples are from, and their labels
(e.g., O=disordered, 1=0rdered).

What we are doing is called supervised learning.

Later in the course we will see methods which do not need these
labels, i.e. unsupervised learning.

For physics in practice: supervised learning can teach you how well
a method is working for a desired task. To do something “new”, we
usually have to use unsupervised learning.



Phases of the 2D Ising Model
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Experiment with Juypter Notebook 6:
https://physics.bu.edu/%7Epankajm/MLnotebooks.html



SUSY vs SM Background



SUSY vs SM Background

Using the dataset from the UC g
Irvine ML repository produced by

MC simulations to contain events

with 2 leptons (electrons or muons)

These events with 2 leptons with
large p; can occur in SUSY o
models or within the SM. 7 v

18 kinematic variables (“features”) .
are recorded for each event. ’ W ~

Figure 4 | Diagrams for SUSY benchmark. Example diagrams describing
the signal process involving hypothetical supersymmetric particles y* and

Can tra| N a IOg|S‘t|C reg ressor to 0 along with charged leptons /% and neutrinos v (a) and the background

process involving W bosons (b). In both cases, the resulting observed

CIaSS|fy the eve ntS |nto SUSY Or particles are two charged leptons, as neutrinos and XO escape undetected.
SM background.



sub-leading lepton pT (AU)

SUSY vs SM Background
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Juypter Notebook 5:
https://physics.bu.edu/%7Epankajm/MLnotebooks.html



https://physics.bu.edu/%7Epankajm/MLnotebooks.html

Multi-class Classification



Softmax Regression

e Going from 2 labels to M labels.

o Treatthe label as a vectory; € 7% i.e., one hot-encoding of
labels:

(1) (0) (0
0 1 '
0-1]" 1l - M—-1-1.

' , . e 0
\0) \0) \1)

* The probability of being in class m'is the softmax function:

_ e ~itm
P(.Vim’ — 1|Xia {Wk}ﬁ/[:ol) —

where y, . = {Y,},, is the m-th component of vector y.



Softmax Regression

Likelihood of this M-class classifier:

n M-—1

POl = [ ][ [ [PGim = 11x0, wim)P'm

=1 m=0
X [1 = P(yim = 1]x;, Wp,)]'Vim
Cost function:

n M-—1
CW) == > Yin l0g P(yim = 1|%;, Wp)
i=1 m=0
+ (1 —Yim)10og (1 — P(Yim = 1|x;, Wp,))

Activations (one-hot encoding), can be thought of as activating
particular cells (e.g. in your brain).

Becomes a lot harder for a larger number of classes.



Classifying Digits — MNIST



MNIST

e Classifying digits = M=10 categories

* MNIST = Dataset of handwritten digits,
28x28=784 pixel grid, each assumes 256
grayscale values, interpolating between
white and black.

»J p— J — . P
O ' - » ' c : O =
O .
O ’
. - ) -— "~ .-
- ' ‘ o O o

http://yann.lecun.com/exdb/mnist/

* 60,000 images: 50,000 for training, 10,000
for testing

Experiment with Notebook 7 using softmax:
https://physics.bu.edu/%7Epankajm/MLnotebooks.html



Summary

Binary classification Logistic sigmoid
Binary cross-entropy as loss function
Multi-class classification

3 Examples: Phase classification 2D Ising, SUSY datasets,
handwritten digits MNIST.



