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Lecture 6: Information Content



Recap of Lecture 5

Binary classification Logistic sigmoid
Binary cross-entropy as loss function
Multi-class classification

3 Examples: Phase classification 2D Ising, SUSY datasets,
handwritten digits MNIST.



Multi-class Classification



Softmax Regression

e Going from 2 labels to M labels.

o Treatthe label as a vectory; € 7% i.e., one hot-encoding of
labels:
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* The probability of being in class m'is the softmax function:
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where y, . = {Y,},, is the m-th component of vector y.



Softmax Regression

Likelihood of this M-class classifier:
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Activations (one-hot encoding), can be thought of as activating
particular cells (e.g. in your brain).

Becomes a lot harder for a larger number of classes.



Classifying Digits — MNIST



MNIST

e Classifying digits = M=10 categories

* MNIST = Dataset of handwritten digits,
28x28=784 pixel grid, each assumes 256
grayscale values, interpolating between
white and black.

»J p— J — . P
O ' - » ' c : O =
O .
O ’
. - ) -— "~ .-
- ' ‘ o O o

http://yann.lecun.com/exdb/mnist/

* 60,000 images: 50,000 for training, 10,000
for testing

Experiment with Notebook 7 using softmax:
https://physics.bu.edu/%7Epankajm/MLnotebooks.html



Outline for today

e Information Content

e Shannon Entropy

* Kullback-Leibler Divergence
e Capacity of Perceptron

Reference: MacKay Chapter 2, 39, 40; 1805.11965



Quantifying Information

Consider the following two sentences:

e | am taking three physics courses.

e | am taking Physics 835, 910, 922

Which sentence contains more information?

The amount of information of event A= —log P(event A)

When the probability is low, the amount of information is large.



Shannon Entropy

Shannon information content of an outcome x (in units of “bits”):

1 h(x)

h(x) = log, P

Shannon entropy (X’s average info content) -
: h(0.5) = 1

1 1r ...................... :
= ) P(z)log P(z)’ X =cnsemble P
rEAx

P(x) = 0O gives no contribution to H(X) due to L'Hospital's Rule.

Consider an ensemble with 2 outcomes: )

1
Hy(p) = H(p,1 = p) =P10g2; +(1 —p) log, T

No info conveyed at p=0, 1




Information Content

We can extrapolate from this 2-outcome example these properties:
o H(X) > 0 with equality iff p, = 1 for one i.
e Entropy is maximized if p is uniform:
H(X) <log(|Ax|) with equality iff p; = 1/|Ax| for all i.
The following slogan may be useful:

e Large information entropy < difficult to predict

e Small information entropy < easy to predict



Joint Entropy

The joint entropy of X, Y is:

1
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Entropy is additive for independent random variables:
H(X,Y)=H(X)+ H(Y) iff P(z,y)=P(x)P(y).

Our definitions for info content so far apply only to discrete probability
distribution over finite sets & .

Definitions can be extended to infinite sets (entropy may be infinite), or
probability density over a continuous set (MacKay Chapter 11).



Relative Entropy or KL Divergence

Let us start by motivating the notion of relative entropy for finite sets & y:
possible events are A, A,, ..., Ay, with probability p,, p,, ...py-

In practice, p; is not known. Instead we only know how many times A; has
occurred.

Ap : #; times, Ay : #; times, ..., Aw : #w times,
® w . .
#(= )./, #;) times in total.

Task: find an expected probability g; that is as close as possible to p; in
producing the above observed outcomes = maximum likelihood estimation

Suppose each A; occurs with probability g;:

p(probability of A; occurring #; times) = g



Relative Entropy or KL Divergence

The A/’s can occur in any order, e.g., [A{, A{, A,] or [A,, A, A¢]. TO
account for the combinatorics, we multiply the probability by:
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Task: find g,’s that maximize this probability.

This problem can be solved by the Lagrange multiplier method:

#! ud
L(g;,4) = log |q/'g}...q}" T +/1<1—261i>
i ‘ " i=1



Relative Entropy or KL Divergence

Extremizing the Lagrangian:

=T A=
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In the limit of large dataset (# — ©0), the probability is maximized

when g; = p; .
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Even though we know what g; maximize the probability, let’s keep

going to find our loss function.

Since the individual #,’s must also be large in this limit unless p;, = 0,
using the Stirling’s formula:
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Relative Entropy or KL Divergence

 Maximizing the probability amounts to maximizing:
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e Goal: to make this probability as close to 1 as possible, i.e., make
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as close to 0 as possible. This quantity is known as the relative entropy (or
Kullback-Leibler divergence in information theory). This is our loss function.



Gibbs’ Inequality

Dy (P|] Q) is also known as the KL distance even though it is not strictly a
distance because in general:

D (P[] Q) # Dg;(Q| | P)

Relative entropy (KL divergence) can be similarly defined for continuous
probability distributions P(x), Q(x):

P(x)
O(x)

Moreover, the relative entropy satisfies the Gibbs’ inequality:

D(P110) = de P(x) log

D (P|Q) >0

Relative entropy is important in pattern recognition, design of neutral network
loss functions, and information theory.



Proving Gibbs’ Inequality

First prove the Gibbs’ inequality for finite sets &/ & using natural log;
the later assumption can be relaxed by scaling relationships below.

Let / denotes the set of all i for which p, # O:
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The 1stinequality follows fromInx < x — 1, Vx > O which is
saturated only for x = 1. 3

— log X
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The 2nd inequality is a consequence of
P and Q being probability distributions.
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Proving Gibbs’ Inequality

We have shown so far that: — Zp,- Ing; > - Zpi In p,
el 1S

Both sums can be extended to all i = 1,2,..., W by noting that:

pilnp;—>0asp, -0 Ing,— o asqg;— 0
W 114
We arrive at the Gibbs’inequality: — ) pilng, > — ) p;Inp,
i=1 i=1

For the equality to hold, both conditions must be satisfied:

. i =] ‘v’iEIinorderforlnﬁ =ﬁ—1tohold
Pi Pi  Pi } pi=q:Vi=12,..W

) Zqi= 1 whichmeans ¢; =01t p, =0

el



Example: Gaussian Distribution

e Consider two Gaussian distributions:
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Example: Gaussian Distribution

e Relative entropy as the “distance” between probability distributions.

« Consider two “nearby points” in the (i, ) space:
Op =0, Up=H, O'q:O'+dO', ,Ltq:N+du-

« Up to second order in do, du:
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e Metric of a hyperboloid, a part of AdS spacetime. AdS metric diverges at its infinite
boundary (6 = 0). A curiosity or maybe more? https://arxiv.org/abs/2001.02683



https://arxiv.org/abs/2001.02683

Summary

Multi-class classification, e.g., handwritten digits MNIST.
Information Content
Shannon entropy (relative entropy, KL divergence, KL distance)

Gibbs’ inequality



