
(Image: Fermilab/CERN)

PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 6: Information Content



Recap of Lecture 5

• Binary classification Logistic sigmoid 

• Binary cross-entropy as loss function 

• Multi-class classification 

• 3 Examples: Phase classification 2D Ising, SUSY datasets, 
handwritten digits MNIST. 



Multi-class Classification



Softmax Regression

• Going from 2 labels to M labels.

• Treat the label as a vector , i.e., one hot-encoding of 
labels:

• The probability of being in class m’ is the softmax function:

where  is the -th component of vector .
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Fig. 25. A comparison of discrimination power from using logistic regression with only simple kinematic variables (green), logistic regression using
both simple and higher-order kinematic variables (purple), and a cut-based approach that varies the requirements on the leading lepton pT .

is given by

P(yim0 = 1|xi, {wk}
M�1
k=0 ) =

e�xTi wm0

PM�1
m=0 e�xTi wm

, (79)

where yim0 ⌘ [y i]m0 refers to the m0-th component of vector y i. This is known as the SoftMax function. Therefore, the
likelihood of this M-class classifier is simply (cf. Section 7.1):

P(D|{wk}
M�1
k=0 ) =
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i=1

M�1Y

m=0

[P(yim = 1|xi,wm)]yim

⇥ [1 � P(yim = 1|xi,wm)]1�yim (80)

from which we can define the cost function in a similar fashion:

C(w) = �

nX

i=1

M�1X

m=0

yim log P(yim = 1|xi,wm)

+ (1 � yim) log (1 � P(yim = 1|xi,wm)) . (81)

As expected, for M = 1, we recover the cross entropy for logistic regression, cf. Eq. (76).

7.5. An example of SoftMax classification: MNIST digit classification

A paradigmatic example of SoftMax regression is to classify handwritten digits from the MNIST dataset. Yann LeCun
and collaborators first collected and processed 70000 handwritten digits, each of which is laid out on a 28 ⇥ 28-pixel grid.
Every pixel assumes one of 256 grayscale values, interpolating between white and black. A representative input sample
is show in Fig. 26.

Since there are 10 categories for the digits 0 through 9, this corresponds to SoftMax regression with M = 10. We
encourage readers to experiment with Notebook 7 to explore SoftMax regression applied to MNIST. We include in Fig. 27
the learned weights wk, where k corresponds to class labels (i.e. digits). We shall come back to SoftMax regression in
Section 9.

8. Combining models

One of the most powerful and widely-applied ideas in modern machine learning is the use of ensemble methods that
combine predictions from multiple, often weak, statistical models to improve predictive performance (Dietterich et al.,
2000). Ensemble methods, such as random forests (Breiman, 2001; Geurts et al., 2006; Ho, 1998), and boosted gradient
trees, such as XGBoost (Chen and Guestrin, 2016; Friedman, 2001), undergird many of the winning entries in data science
competitions such as Kaggle, especially on structured datasets.8 Even in the context of neural networks, see Section 9 it

8 Neural networks generally perform better than ensemble methods on unstructured data, images, and audio.

, …., 



Softmax Regression

• Likelihood of this M-class classifier:

• Cost function:

• Activations (one-hot encoding), can be thought of as activating 
particular cells (e.g. in your brain). 

• Becomes a lot harder for a larger number of classes.
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Classifying Digits — MNIST



MNIST

• Classifying digits ⇒ M=10 categories

• MNIST = Dataset of handwritten digits, 
28x28=784 pixel grid, each assumes 256 
grayscale values, interpolating between 
white and black.

Yann LeCun, Corinna Cortes, Christopher Burges 

http://yann.lecun.com/exdb/mnist/

• 60,000 images: 50,000 for training, 10,000 
for testing 

Experiment with Notebook 7 using softmax:  
https://physics.bu.edu/%7Epankajm/MLnotebooks.html



Outline for today

• Information Content

• Shannon Entropy

• Kullback-Leibler Divergence

• Capacity of Perceptron

Reference: MacKay Chapter 2, 39, 40; 1805.11965



Quantifying Information

• Consider the following two sentences:

• I am taking three physics courses.

• I am taking Physics 835, 910, 922

• Which sentence contains more information?

• The amount of information of event A = 

• When the probability is low, the amount of information is large.

−log P(event A)



Shannon Entropy

• Shannon information content of an outcome  (in units of “bits”):

• Shannon entropy (X’s average info content)

•  gives no contribution to  due to L'Hospital's Rule.

• Consider an ensemble with 2 outcomes:

x

P(x) = 0 H(X)

32 2 — Probability, Entropy, and Inference

What do you notice about your solutions? Does each answer depend on the
detailed contents of each urn?

The details of the other possible outcomes and their probabilities are ir-
relevant. All that matters is the probability of the outcome that actually
happened (here, that the ball drawn was black) given the different hypothe-
ses. We need only to know the likelihood, i.e., how the probability of the data
that happened varies with the hypothesis. This simple rule about inference is
known as the likelihood principle.

The likelihood principle: given a generative model for data d given
parameters θ, P (d |θ), and having observed a particular outcome
d1, all inferences and predictions should depend only on the function
P (d1 |θ).

In spite of the simplicity of this principle, many classical statistical methods
violate it.

2.4 Definition of entropy and related functions

The Shannon information content of an outcome x is defined to be

h(x) = log2
1

P (x)
. (2.34)

It is measured in bits. [The word ‘bit’ is also used to denote a variable
whose value is 0 or 1; I hope context will always make clear which of the
two meanings is intended.]

In the next few chapters, we will establish that the Shannon information
content h(ai) is indeed a natural measure of the information content
of the event x = ai. At that point, we will shorten the name of this
quantity to ‘the information content’.

i ai pi h(pi)

1 a .0575 4.1
2 b .0128 6.3
3 c .0263 5.2
4 d .0285 5.1
5 e .0913 3.5
6 f .0173 5.9
7 g .0133 6.2
8 h .0313 5.0
9 i .0599 4.1
10 j .0006 10.7
11 k .0084 6.9
12 l .0335 4.9
13 m .0235 5.4
14 n .0596 4.1
15 o .0689 3.9
16 p .0192 5.7
17 q .0008 10.3
18 r .0508 4.3
19 s .0567 4.1
20 t .0706 3.8
21 u .0334 4.9
22 v .0069 7.2
23 w .0119 6.4
24 x .0073 7.1
25 y .0164 5.9
26 z .0007 10.4
27 - .1928 2.4

∑

i

pi log2
1
pi

4.1

Table 2.9. Shannon information
contents of the outcomes a–z.

The fourth column in table 2.9 shows the Shannon information content
of the 27 possible outcomes when a random character is picked from
an English document. The outcome x = z has a Shannon information
content of 10.4 bits, and x = e has an information content of 3.5 bits.

The entropy of an ensemble X is defined to be the average Shannon in-
formation content of an outcome:

H(X) ≡
∑

x∈AX

P (x) log
1

P (x)
, (2.35)

with the convention for P (x) = 0 that 0 × log 1/0 ≡ 0, since
limθ→0+ θ log 1/θ = 0.

Like the information content, entropy is measured in bits.

When it is convenient, we may also write H(X) as H(p), where p is
the vector (p1, p2, . . . , pI). Another name for the entropy of X is the
uncertainty of X.

Example 2.12. The entropy of a randomly selected letter in an English docu-
ment is about 4.11 bits, assuming its probability is as given in table 2.9.
We obtain this number by averaging log 1/pi (shown in the fourth col-
umn) under the probability distribution pi (shown in the third column).
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Information Content

• We can extrapolate from this 2-outcome example these properties:

•  with equality iff  for one .

• Entropy is maximized if  is uniform:

• The following slogan may be useful:

• Large information entropy ⇔ difficult to predict

• Small information entropy ⇔ easy to predict

H(X) ≥ 0 pi = 1 i

p

2.5: Decomposability of the entropy 33

We now note some properties of the entropy function.

• H(X) ≥ 0 with equality iff pi = 1 for one i. [‘iff’ means ‘if and only if’.]

• Entropy is maximized if p is uniform:

H(X) ≤ log(|AX |) with equality iff pi = 1/|AX | for all i. (2.36)

Notation: the vertical bars ‘| · |’ have two meanings. If AX is a set, |AX |
denotes the number of elements in AX ; if x is a number, then |x| is the
absolute value of x.

The redundancy measures the fractional difference between H(X) and its max-
imum possible value, log(|AX |).

The redundancy of X is:

1 − H(X)
log |AX | . (2.37)

We won’t make use of ‘redundancy’ in this book, so I have not assigned
a symbol to it.

The joint entropy of X,Y is:

H(X,Y ) =
∑

xy∈AXAY

P (x, y) log
1

P (x, y)
. (2.38)

Entropy is additive for independent random variables:

H(X,Y ) = H(X) + H(Y ) iff P (x, y) = P (x)P (y). (2.39)

Our definitions for information content so far apply only to discrete probability
distributions over finite sets AX . The definitions can be extended to infinite
sets, though the entropy may then be infinite. The case of a probability
density over a continuous set is addressed in section 11.3. Further important
definitions and exercises to do with entropy will come along in section 8.1.

2.5 Decomposability of the entropy

The entropy function satisfies a recursive property that can be very useful
when computing entropies. For convenience, we’ll stretch our notation so that
we can write H(X) as H(p), where p is the probability vector associated with
the ensemble X.

Let’s illustrate the property by an example first. Imagine that a random
variable x ∈ {0, 1, 2} is created by first flipping a fair coin to determine whether
x = 0; then, if x is not 0, flipping a fair coin a second time to determine whether
x is 1 or 2. The probability distribution of x is

P (x=0) =
1
2
; P (x=1) =

1
4
; P (x=2) =

1
4
. (2.40)

What is the entropy of X? We can either compute it by brute force:

H(X) = 1/2 log 2 + 1/4 log 4 + 1/4 log 4 = 1.5; (2.41)

or we can use the following decomposition, in which the value of x is revealed
gradually. Imagine first learning whether x=0, and then, if x is not 0, learning
which non-zero value is the case. The revelation of whether x=0 or not entails



Joint Entropy

• The joint entropy of X, Y is:

• Entropy is additive for independent random variables:

• Our definitions for info content so far apply only to discrete probability 
distribution over finite sets .

• Definitions can be extended to infinite sets (entropy may be infinite), or 
probability density over a continuous set (MacKay Chapter 11). 

𝒜X
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Relative Entropy or KL Divergence

• Let us start by motivating the notion of relative entropy for finite sets :  
possible events are  with probability .

• In practice,  is not known. Instead we only know how many times  has 
occurred. 

• Task: find an expected probability  that is as close as possible to  in 
producing the above observed outcomes ⇒ maximum likelihood estimation

• Suppose each  occurs with probability :

𝒜X
A1, A2, …, AW p1, p2, …pW

pi Ai

qi pi

Ai qi

6 1 Forewords: Machine learning and physics

•
⇢

A1 : #1 times, A2 : #2 times, . . . , AW : #W times,
#(= Õ

W

i=1 #i) times in total. (1.10)

Here, # (the number sign) is an appropriate positive integer, indicating the number
of times. Just as physics experiments cannot observe the theoretical equations them-
selves, we cannot directly observe pi here. Therefore, consider creating an expected
probability qi that is as close as possible to pi and regard the problem of determining
a “good” qi here as machine learning. How should we determine the value of qi from
the “information” (1.10) alone? One thing we can do is to evaluate

• Probability of obtaining information (1.10) assuming qi is the true probability.
(1.11)

If we can calculate this, we need to determine qi that makes the probability (1.11) as
large as possible (close to 1). This idea is called the maximum likelihood estimation.
First, assume that each Ai occurs with probability qi ,

p(probability of Ai occurring #i times) = q#i
i
. (1.12)

Also, in this setup, we assume that the Ais can occur in any order. For example,
[A1, A1, A2] and [A2, A1, A1] are counted as the same, and the number of such combi-
nations should be accounted for in the probability calculation. This is the multinomial
coe�cient ✓

#
#1,#2, . . . ,#W

◆
=

#!
#1!#2! · · · #W !

. (1.13)

Then we can write the probability as the product of these,

(1.11) = q#1
1 q#2

2 . . . q
#W
W

#!
#1!#2! . . . #W !

. (1.14)

Then, we should look for qi that makes this value as large as possible. In machine
learning, qi is varied to actually increase the amount equivalent to (1.14) as much as
possible5.

By the way, if the number of data is large (# ⇡ 1), by the law of large numbers6,
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If we look for qi , � which extremize this L, then we find
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The reader can see that this fits with the intuition from the law of large numbers (1.17).
6 The law of large numbers will be explained in Chapter 5.
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Relative Entropy or KL Divergence

• Extremizing the Lagrangian:

• In the limit of large dataset ( ), the probability is maximized 
when  . 

• Even though we know what  maximize the probability, let’s keep 
going to find our loss function.

• Since the individual ’s must also be large in this limit unless , 
using the Stirling’s formula:

# → ∞
qi = pi

qi

#i pi = 0
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#i
#

⇡ pi , #i ⇡ # · pi . (1.17)

Here, #i must also be a large value, so according to Stirling’s formula (which is
familiar in physics), we find

#i! ⇡ ##i
i
. (1.18)

By substituting (1.17) and (1.18) into (1.14), we can get an interesting quantity:

(1.14) ⇡ q#·p1
1 q#·p2

2 . . . q#·pW
W

#!
(# · p1)!(# · p2)! . . . (# · pW )!

⇡ q#·p1
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##
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= q#·p1
1 q#·p2

2 . . . q#·pW
W

1
p#·p1

1 p#·p2
2 . . . p#·pW

W

= exp
h
� #

W’
i=1

pi log
pi
qi

i
. (1.19)

The goal is to make this probability as close to 1 as possible, which means to bringÕ
W

i=1 pi log pi

qi
close to zero. This quantity is called relative entropy, and is known to

be zero only when pi = qi . Therefore, bringing the original goal (1.11) as close to 1
as possible corresponds to reducing the relative entropy. We mean,

Relative entropy = Amount to measure how close the prediction qi is to the truth pi .

The properties of the relative entropy will be explained later in this book. The
relative entropy is called Kullback-Leibler divergence in information theory, and
is important in machine learning as can be seen here, as well as having many
mathematically interesting properties. The fact that (1.11) is approximately the same
as the Kullback-Leibler divergence is called Sanov’s (I. N. Sanov) theorem [12, 13].

1.4 Machine learning and physics

So far, we have briefly described the relationship between physics and information
theory, and the relationship between machine learning and information theory. Then,
there may be a connection between machine learning and physics in some sense. The
aforementioned Fig. 1.1 shows the concept: physics and information are connected,
and information and machine learning are connected. Then, how can physics and
machine learning be connected?

A thought experiment
Suppose we have a fairy here. A button and a clock are placed in front of the fairy,
and every minute, the fairy chooses to press the button or not. If the fairy presses the
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Relative Entropy or KL Divergence

• Maximizing the probability amounts to maximizing:

• Goal: to make this probability as close to 1 as possible, i.e., make 

as close to 0 as possible. This quantity is known as the relative entropy (or 
Kullback-Leibler divergence in information theory). This is our loss function.
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DKL(P | |Q) =
W

∑
i=1

pi log
pi

qi
where P = {p1, p2, …, pW}, Q = {q1, q2, …qW}



Gibbs’ Inequality

•  is also known as the KL distance even though it is not strictly a 
distance because in general:

• Relative entropy (KL divergence) can be similarly defined for continuous 
probability distributions :

• Moreover, the relative entropy satisfies the Gibbs’ inequality: 

• Relative entropy is important in pattern recognition, design of neutral network 
loss functions, and information theory.

DKL(P | |Q)

P(x), Q(x)

DKL(P | |Q) ≠ DKL(Q | |P)

DKL(P | |Q) = ∫ dx P(x) log
P(x)
Q(x)

DKL(P | |Q) ≥ 0



Proving Gibbs’ Inequality

• First prove the Gibbs’ inequality for finite sets  & using natural log; 
the later assumption can be relaxed by scaling relationships below.

• Let  denotes the set of all  for which : 

• The 1st inequality follows from  which is 
saturated only for .

• The 2nd inequality is a consequence of                                                    
 and  being probability distributions.

𝒜X

I i pi ≠ 0

ln x ≤ x − 1, ∀x > 0
x = 1

P Q

−∑
i∈I

pi ln
qi

pi
≥ − ∑

i∈I

pi ( qi

pi
− 1) = − ∑

i∈I

qi + ∑
i∈I

pi = − ∑
i∈I

qi + 1 ≥ 0

2.3 Stochastic gradient descent method 29

Fig. 2.3 Green: (X � 1), Blue: graph of log X.

DKL(p| |q) � 0. (2.47)

Next, the equality is satisfied when the equality of (2.46) is established (X = 1). This
means that for any x we need to have

q(x)
p(x) = 1, (2.48)

which shows (2.43).

Example: Gaussian distribution
To get a sense of the relative entropy, let us calculate the relative entropy for the
Gaussian distribution:

1
p

2⇡�
e�

1
2�2 (x�µ)2 . (2.49)

So here we consider

p(x) = 1
p

2⇡�p
e
� 1

2�2
p

(x�µp )2
, (2.50)

q(x) = 1
p

2⇡�q
e
� 1

2�2
q

(x�µq )2
. (2.51)

Then by definition

∑
i∈I

pi = 1; ∑
i∈I

qi ≤
W

∑
i

qi = 1



Proving Gibbs’ Inequality

• We have shown so far that:

• Both sums can be extended to all  by noting that: 

• We arrive at the Gibbs’ inequality: 

• For the equality to hold, both conditions must be satisfied:

•  in order for  to hold

•  which means 

i = 1,2,…, W

qi

pi
= 1 ∀i ∈ I ln

qi

pi
=

qi

pi
− 1

∑
i∈I

qi = 1 qi = 0 if pi = 0

−∑
i∈I

pi ln qi ≥ − ∑
i∈I

pi ln pi

pi ln pi → 0 as pi → 0 ln qi → ∞ as qi → 0

−
W

∑
i=1

pi ln qi ≥ −
W

∑
i=1

pi ln pi

｝pi = qi ∀i = 1,2,…W



Example: Gaussian Distribution

• Consider two Gaussian distributions:

• The relative entropy:
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At the second equality we made a Taylor expansion. You can again show that this
value is positive, using (2.46).

Gaussian distribution and AdS spacetime
The definition of relative entropy seems to represent the “distance” between proba-
bility distributions. If there is a distance, each probability distribution corresponds
to a point, and when it is collected, it becomes a “space.”18 In fact, in the Gaussian
distribution example above, the mean µ takes a value between (�1,+1) and �
takes a value between (0,1) so the whole Gaussian distributions can form a “space”
(�1,+1) ⇥ (0,+1). Let us find the “infinitesimal distance” in this case from the
relative entropy. We consider a point

�p = � , µp = µ , (2.53)

and a point close to it

�q = � + d� , µq = µ + dµ . (2.54)

We calculate the relative entropy up to the second order in d�, dµ as
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(In the last expression, we defined µ̃ = µ/
p

2.) This is the metric of a hyperboloid,
and a part of the metric of the anti-de Sitter spacetime (AdS spacetime). In recent
years, the anti-de Sitter spacetime has played an important role in phenomena called

18 In the research field called information geometry, this viewpoint is used.



Example: Gaussian Distribution

• Relative entropy as the “distance” between probability distributions.

• Consider two “nearby points” in the  space:

• Up to second order in :

• Metric of a hyperboloid, a part of AdS spacetime. AdS metric diverges at its infinite 
boundary . A curiosity or maybe more? https://arxiv.org/abs/2001.02683
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dσ, dμ
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At the second equality we made a Taylor expansion. You can again show that this
value is positive, using (2.46).

Gaussian distribution and AdS spacetime
The definition of relative entropy seems to represent the “distance” between proba-
bility distributions. If there is a distance, each probability distribution corresponds
to a point, and when it is collected, it becomes a “space.”18 In fact, in the Gaussian
distribution example above, the mean µ takes a value between (�1,+1) and �
takes a value between (0,1) so the whole Gaussian distributions can form a “space”
(�1,+1) ⇥ (0,+1). Let us find the “infinitesimal distance” in this case from the
relative entropy. We consider a point

�p = � , µp = µ , (2.53)

and a point close to it

�q = � + d� , µq = µ + dµ . (2.54)

We calculate the relative entropy up to the second order in d�, dµ as
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(In the last expression, we defined µ̃ = µ/
p

2.) This is the metric of a hyperboloid,
and a part of the metric of the anti-de Sitter spacetime (AdS spacetime). In recent
years, the anti-de Sitter spacetime has played an important role in phenomena called

18 In the research field called information geometry, this viewpoint is used.
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At the second equality we made a Taylor expansion. You can again show that this
value is positive, using (2.46).

Gaussian distribution and AdS spacetime
The definition of relative entropy seems to represent the “distance” between proba-
bility distributions. If there is a distance, each probability distribution corresponds
to a point, and when it is collected, it becomes a “space.”18 In fact, in the Gaussian
distribution example above, the mean µ takes a value between (�1,+1) and �
takes a value between (0,1) so the whole Gaussian distributions can form a “space”
(�1,+1) ⇥ (0,+1). Let us find the “infinitesimal distance” in this case from the
relative entropy. We consider a point

�p = � , µp = µ , (2.53)

and a point close to it

�q = � + d� , µq = µ + dµ . (2.54)

We calculate the relative entropy up to the second order in d�, dµ as
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(In the last expression, we defined µ̃ = µ/
p

2.) This is the metric of a hyperboloid,
and a part of the metric of the anti-de Sitter spacetime (AdS spacetime). In recent
years, the anti-de Sitter spacetime has played an important role in phenomena called

18 In the research field called information geometry, this viewpoint is used.
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At the second equality we made a Taylor expansion. You can again show that this
value is positive, using (2.46).

Gaussian distribution and AdS spacetime
The definition of relative entropy seems to represent the “distance” between proba-
bility distributions. If there is a distance, each probability distribution corresponds
to a point, and when it is collected, it becomes a “space.”18 In fact, in the Gaussian
distribution example above, the mean µ takes a value between (�1,+1) and �
takes a value between (0,1) so the whole Gaussian distributions can form a “space”
(�1,+1) ⇥ (0,+1). Let us find the “infinitesimal distance” in this case from the
relative entropy. We consider a point

�p = � , µp = µ , (2.53)

and a point close to it

�q = � + d� , µq = µ + dµ . (2.54)

We calculate the relative entropy up to the second order in d�, dµ as
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(In the last expression, we defined µ̃ = µ/
p

2.) This is the metric of a hyperboloid,
and a part of the metric of the anti-de Sitter spacetime (AdS spacetime). In recent
years, the anti-de Sitter spacetime has played an important role in phenomena called

18 In the research field called information geometry, this viewpoint is used.

where μ̃ = μ/ 2

https://arxiv.org/abs/2001.02683


Summary

• Multi-class classification, e.g., handwritten digits MNIST. 

• Information Content

• Shannon entropy (relative entropy, KL divergence, KL distance)

• Gibbs’ inequality


