PHY 835: Collider Physics Phenomenology

Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 7: Perceptron

Recap of Lecture 6

- Multi-class classification, e.g., handwritten digits MNIST.
- Information Content
- Shannon entropy (relative entropy, KL divergence, KL distance)
- Gibbs' inequality

Outline for today

- Capacity of Perceptron
- Survey of classifiers
- Decision Trees

• Reference: MacKay's book, Chapter 40

Perceptron

• Binary classifier = single neuron (perceptron)

$$y = \sigma(\mathbf{x}^T \cdot \mathbf{w}) = \sigma(\sum_{i=0}^I x_i w_i)$$

- What is the capacity of this system, i.e. how much information can be stored by training a neuron? (eventually a neural network).
- Capacity = infinite (as each weight is real number)? No, as receiver is not able to examine the weights directly.
- K inputs for perceptron, N data points. Possible number of binary labels 2^N.
 What is the probability that all N bits are correctly reproduced?
- How large can N be, for a given K, while keeping this probability close to 1?

General Position

- Assumption: Data points are in generic position:
 - Any subset of size ≤ K is linear independent, and no K+1 of them lie in a (K-1) dimensional plane.

e.g., for K=3, no 3 points are collinear and no 4 points are coplanar.

 Goal: count the number of threshold functions T(N,K) using the linear threshold function:

$$y = f\left(\sum_{k=1}^{K} w_k x_k\right) \qquad \qquad f(a) = \begin{cases} 1 & a > 0\\ 0 & a \le 0. \end{cases}$$

• Assume there is no bias w_0 . The capacity of a neuron with a bias can be obtained by replacing K by K+1 in final result (even \neq general position).

Counting T(N,K)

- Goal: count T(N,K) = # distinct threshold functions on N points in general positions in K dimensions.
- Start with some special cases and derive recurrence relation.
- K=1, any N:

Only one weight w_1 ; by changing its sign, we can realize {red=1, blue=0} or {red=0, blue=1}, hence T(N,1)=2.

• N=1, any K: only one point $\mathbf{x}^{(1)}$ so the two possible labelings can be realized by $\mathbf{w} = \pm \mathbf{x}^{(1)}$, hence, T(1,K)=2.

Counting T(N,K)

- Spin the separating line around the origin:
 - Cross one point at a time (general positions);
 - In one revolution, every point is passed over twice.

 $\Rightarrow T(N,2) = 2N$ which is $< 2^N$ for $N \ge 3$ (not all binary functions can be realized by a linear threshold function).

Counting T(N,2) in Weight Space

Each point defines a hyperplane in the weight space that produce 2 labelings:

$$\mathbf{x}^{(n)} \cdot \mathbf{w} = 0$$

Counting T(N,3) in Weight Space

		K						
N	1	2	3	4	5	6	7	8
1	2	2	2	2	2	2	2	2
2	2	4	4					
3	2	6	8					
4	2	8	14					
5	2	10						
6	2	12						

Recurrence Relation

 Adding an N-th hyperplane in K dimensions bisects T(N-1,K-1) of the T(N-1,K) regions that were created by the previous N-1 hyperplanes.

 $T(N,K) = 2T(N-1,K-1) + \left[T(N-1,K) - T(N-1,K-1)\right] = T(N-1,K) + T(N-1,K-1)$

- subject to the boundary conditions: T(N,1)=2 and T(1,K)=2.
- The recurrence relation is satisfied by the Pascal's triangle:

$C(N,K) \equiv \binom{N}{K}$	$\bigg) \equiv \frac{N!}{(N-K)!K!}.$
------------------------------	--------------------------------------

	<i>K</i>							
N	$\overline{0}$	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		

• Convention: $C(N, K) \equiv 0$ for K > N or K < 0.

Solving the Recurrence Relation

- Even C(N,K) satisfies the same recurrence relation as T(N,K), it does not mean T(N,K)=C(N,K).
- Solution: T(N,K)=linear combination of $C(N+\alpha, K + \beta)$ subject to boundary conditions: T(N,1)=2 and T(1,K)=2.

$$T(N,K) = 2\sum_{k=0}^{K-1} \binom{N-1}{k} = \begin{cases} 2^N & K \ge N \\ 2\sum_{k=0}^{K-1} \binom{N-1}{k} & K < N. \end{cases}$$

- equal to # of binary labelings 2^N for all N \leq K
- VC(Vapnik–Chervonenkis) dimension of a class of functions = maximum # of points on which any arbitrary labelling can be realized.
- VC dimension of binary threshold function on K dimension = K.

Interpretation

• $T(N, K)/2^N$ tells us the probability that an arbitrary labelling can be memorized by our neuron.

 A single neuron can almost certainly memorize up to N = 2K random binary labels perfectly, but will almost certainly fail to memorize more.

Outline of the Course

Where do we stand?

- Basic of Machine Learning
- Optimizers
- Regression
- Logistic/Multi-class classification
- A survey of classifiers
- Neural Networks
- Unsupervised learning

- Variational Methods
- Generative Adversarial Networks
- Normalizing Flows
- Reinforcement Learning
- Applications in Physics

Survey of Classifiers

Overview

- There are several alternatives to neural network classifiers, I will give a brief overview on how they work:
 - Decision Trees
 - Support Vector Machines
 - Bagging
 - Boosting
 - Random Forests
- Why? Because they work very well in several situations and are sometimes easier to interpret.

Decision Trees

Decision Trees

- Depth of tree = maximum number of splitting conditions.
- Stop growing the tree when 1) all items on a branch have the same features (values) or 2) other stopping criterion is met.
- Usually have maximum criterion to avoid overfitting.
- At each splitting node, look for features which provide the best splitting condition. How do we quantify best?
- Maximize "information gain":

Gain
$$(S, \mathscr{A}) =$$
 Entropy $(S) - \sum_{\nu \in \mathscr{A}} \frac{|S^{\nu}|}{|S|}$ Entropy (S^{ν}) ; Entropy $(S) = -\sum_{i} p_{i} \log_{2} p_{i}$
set attributes size of set

Decision Trees: Example

Day	Outlook	Temp.	Humidity	Wind	Go hiking?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Decision Trees: Example

What conditions should we pick?

Day	Outlook	Temp.	Humidity	Wind	Go hiking?	Gain (S, outlook)
1	Sunny	Hot	High	Weak	No	
2	Sunny	Hot	High	Strong	Νο	= Entropy (S)
3	Overcast	Hot	High	Weak	Yes	
4	Rain	Mild	High	Weak	Yes	5
5	Rain	Cool	Normal	Weak	Yes	Entropy
6	Rain	Cool	Normal	Strong	No	14
7	Overcast	Cool	Normal	Strong	Yes	4
8	Sunny	Mild	High	Weak	No	—— Entropy
9	Sunny	Cool	Normal	Weak	Yes	14
10	Rain	Mild	Normal	Weak	Yes	5
11	Sunny	Mild	Normal	Strong	Yes	Entrop
12	Overcast	Mild	High	Strong	Yes	14
13	Overcast	Hot	Normal	Weak	Yes	
14	Rain	Mild	High	Strong	Νο	= 0.246

Entropy
$$(S) = -\frac{5}{14}\log\frac{5}{14} - \frac{9}{14}\log\frac{9}{14} = 1.245$$

Entropy (S, outlook = sunny) =
$$-\frac{2}{5}\log\frac{2}{5} - \frac{3}{5}\log\frac{3}{5} = 0.971$$

Entropy (S, outlook = overcast) = 0

Entropy (S, outlook = rain) = $-\frac{3}{5}\log\frac{3}{5} - \frac{2}{5}\log\frac{2}{5} = 0.971$

 $-\frac{5}{14}$ Entropy (*S*, outlook = sunny)

 $-\frac{4}{14}$ Entropy (*S*, outlook = outcast)

 $-\frac{5}{14}$ Entropy (*S*, outlook = rain)

all yes

3 yes and 2 no

Decision Trees: Example

What conditions should we pick?

Day	Outlook	Temp.	Humidity	Wind	Go hiking?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Gain (S, Outlook) = 0.246

Gain (S, Humidity) = 0.151

Gain (S, Wind) = 0.048

Gain (S, Temp.) = 0.029

⇒ Choose Outlook maximizes the information gain

Decision Trees: Hiking Example

Gini vs Entropy

Summary

- Capacity of Perceptron = 2 bits/weight
- Survey of classifiers
- Decision Trees
- How can use decision tree for regression?