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Lecture 7: Perceptron



Recap of Lecture 6

Multi-class classification, e.g., handwritten digits MNIST.
Information Content
Shannon entropy (relative entropy, KL divergence, KL distance)

Gibbs’ inequality



Outline for today

Capacity of Perceptron
Survey of classifiers

Decision Trees

Reference: MacKay’s book, Chapter 40



Perceptron I
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What is the capacity of this system, i.e. how much information can be stored
by training a neuron? (eventually a neural network).

Capacity = infinite (as each weight is real number)? No, as receiver is not
able to examine the weights directly.

K inputs for perceptron, N data points. Possible number of binary labels 2N.
What is the probability that all N bits are correctly reproduced?

How large can N be, for a given K, while keeping this probability close to 17?



General Position

e Assumption: Data points are in generic position:

* Any subset of size < K is linear independent, and no K+1 of them lie
in a (K-1) dimensional plane.

e.g., for K=3, no 3 points are collinear and no 4 points are coplanatr.

* Goal: count the number of threshold functions T(N,K) using the linear
threshold function:
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o Assume there is no bias w,,. The capacity of a neuron with a bias can be
obtained by replacing K by K+1 in final result (even # general position).



Counting T(N,K)

Goal: count T(N,K) = # distinct threshold functions on N points in general
positions in K dimensions.

Start with some special cases and derive recurrence relation.

K=1, any N:
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Only one weight w; by changing its sign, we can realize {red=1, blue=0}
or {red=0, blue=1}, hence T(N,1)=2.

N=1, any K: only one point x(1 s0 the two possible labelings can be
realized by w = £ x'U), hence, T(1,K)=2.



Counting T(N,K)

* K=2, any N: Xy

* Spin the separating line around the origin:
e Cross one point at a time (general positions);
* |n one revolution, every point is passed over twice.

= T(N,2) = 2N which is < 2" for N > 3 (not all binary functions can

be realized by a linear threshold function).



Counting T(N,2) in Weight Space
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Counting T(N,3) in Weight Space

7(4,3) =14

17(3,3) =8
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Recurrence Relation

Adding an N-th hyperplane in K dimensions bisects T(N-1,K-1) of the
T(N-1,K) regions that were created by the previous N-1 hyperplanes.

T(N,K)=2T(N-1K-1)+ [TN-1K)-T(IN-1.K-1)| =T(N- LK) + T(N - 1,LK — 1)

subject to the boundary conditions: T(N,1)=2 and T(1,K)=2.

The recurrence relation is satisfied by the Pascal’s triangle:
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Convention: C(N,K) =0for K > Nor K < 0.



Solving the Recurrence Relation

Even C(N,K) satisfies the same recurrence relation as T(N,K), it does
not mean T(N,K)=C(N,K).

Solution: T(N,K)=linear combination of C(N+a, K + p) subject to
boundary conditions: T(N,1)=2 and T(1,K)=2.

K-1 N
N-1 2 K >N
T(N,K) =2 = K—1 (N— _
S kzo( k ) { 230 ((p) K <N.

equal to # of binary labelings 2" for all N < K

VC( Vapnik—Chervonenkis) dimension of a class of functions =
maximum # of points on which any arbitrary labelling can be realized.

VC dimension of binary threshold function on K dimension = K.



Interpretation

o T(N, K)/2" tells us the probability that an arbitrary labelling can be
memorized by our neuron.

1
078 \ 1 The capacity of a linear
os | | threshold neuron, for

large K, is 2 bits/weight.
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* A ssingle neuron can almost certainly memorize up to N = 2K random
binary labels perfectly, but will almost certainly fail to memorize more.



Outline of the Course

Where do we stand?

K Basic of Machine Learning \

e Optimizers

* Regression

K Logistic/Multi-class classificatw

* Asurvey of classifiers
 Neural Networks

 Unsupervised learning

Variational Methods

Generative Adversarial Networks
Normalizing Flows
Reinforcement Learning

Applications in Physics



Survey of Classifiers



Overview

 There are several alternatives to neural network classifiers, | will give
a brief overview on how they work:

* Decision Trees

e Support Vector Machines
e Bagging

* Boosting

e Random Forests

e Why? Because they work very well in several situations and are
sometimes easier to interpret.



Decision Trees

Root node

Branches False

Condition 3

True False True False

. Leaf node



Decision Trees

Depth of tree = maximum number of splitting conditions.

Stop growing the tree when 1) all items on a branch have the same
features (values) or 2) other stopping criterion is met.

Usually have maximum criterion to avoid overfitting.

At each splitting node, look for features which provide the best
splitting condition. How do we quantify best?

Maximize “information gain”:
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Gain (S, &) = Entropy (S) — 2 5] Entropy ($8%); Entropy (§) = — Zpi log, p;
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Decision Trees: Example

Sunny
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Overcast
Rain
Rain
Rain
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Weak
Strong
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Yes
No



Decision Trees: Example

What conditions should we pick?
m-mm /ain (S, outlook) \
1 Sunny Hot High Weak
2 Sunny Hot High Strong No — Entropy (S )
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes — EntrOpy (S, outlook = SUHHY)
6 Rain Cool Normal Strong No 1 4
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No —— Entropy (S, outlook = outcast)
9 Sunny Cool Normal Weak Yes 1 4
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes - Entropy ( S, outlook = rain)
12 Overcast Mild High Strong Yes 14
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No K: 0.246 /
Entropy (S) 2 Jog = — 2 log 2 = 1.245
ntro = ——10 — og — = |.
by 14 °14 14 °14
2 2 3 3
Entropy (S, outlook = sunny) = — r log 373 log i 0.971 2 yes and 3 no
Entropy (S, outlook = overcast) = 0 all yes

3 3 2 2
Entropy (S, outlook = rain) = — s log riar log e 0.971 3 yes and 2 no



What conditions should we pick?
-mm
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Sunny
Sunny
Overcast
Rain
Rain
Rain
Overcast
Sunny
Sunny
Rain
Sunny
Overcast
Overcast
Rain

Hot

Hot

Hot

Mild
Cool
Cool
Cool
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Cool
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Decision Trees: Example

High
High
High
High
Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High

Weak
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Strong

No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No

Gain (S, Outlook) = 0.246

Gain (S, Humidity) = 0.151

Gain (S, Wind) = 0.048

Gain (S, Temp.) = 0.029

= Choose Outlook maximizes the information gain




Decision Trees: Hiking Example

Root node

Branches Sunny ovelcast Rain

Normal / \High Weal:/ \S;‘otrong




Gini vs Entropy

Entropy () = — )’ p;log, p,

Gini (S)=1- ) p?=1-p>—(1-p2=-2p*+2p

T

two classes
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Summary

Capacity of Perceptron = 2 bits/weight
Survey of classifiers
Decision Trees

How can use decision tree for regression?



