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Lecture 7: Perceptron



Recap of Lecture 6

• Multi-class classification, e.g., handwritten digits MNIST. 

• Information Content

• Shannon entropy (relative entropy, KL divergence, KL distance)

• Gibbs’ inequality



Outline for today

• Capacity of Perceptron

• Survey of classifiers

• Decision Trees

• Reference: MacKay’s book, Chapter 40



Perceptron

• Binary classifier = single neuron (perceptron)

• What is the capacity of this system, i.e. how much information can be stored 
by training a neuron? (eventually a neural network).

• Capacity = infinite (as each weight is real number)? No, as receiver is not 
able to examine the weights directly.

• K inputs for perceptron, N data points. Possible number of binary labels 2N. 
What is the probability that all N bits are correctly reproduced? 

• How large can N be, for a given K, while keeping this probability close to 1? 

39

The Single Neuron as a Classifier

39.1 The single neuron

We will study a single neuron for two reasons. First, many neural network
models are built out of single neurons, so it is good to understand them in
detail. And second, a single neuron is itself capable of ‘learning’ – indeed,
various standard statistical methods can be viewed in terms of single neurons
– so this model will serve as a first example of a supervised neural network.

Definition of a single neuron

We will start by defining the architecture and the activity rule of a single
neuron, and we will then derive a learning rule.
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Figure 39.1. A single neuron

Architecture. A single neuron has a number I of inputs xi and one output
which we will here call y. (See figure 39.1.) Associated with each input
is a weight wi (i = 1, . . . , I). There may be an additional parameter
w0 of the neuron called a bias which we may view as being the weight
associated with an input x0 that is permanently set to 1. The single
neuron is a feedforward device – the connections are directed from the
inputs to the output of the neuron.

Activity rule. The activity rule has two steps.

1. First, in response to the imposed inputs x, we compute the activa-
tion of the neuron,

a =
∑

i

wixi, (39.1)

where the sum is over i = 0, . . . , I if there is a bias and i = 1, . . . , I
otherwise.

2. Second, the output y is set as a function f(a) of the activation.
The output is also called the activity of the neuron, not to be
confused with the activation a. There are several possible activation

activation activity
a → y(a)

functions; here are the most popular.

(a) Deterministic activation functions:
i. Linear.

y(a) = a. (39.2)

ii. Sigmoid (logistic function).

0

1

-5 0 5y(a) =
1

1 + e−a
(y ∈ (0, 1)). (39.3)
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y = σ(xT ⋅ w) = σ(
I

∑
i=0

xiwi)



General Position

• Assumption: Data points are in generic position: 

• Any subset of size ≤ K is linear independent, and no K+1 of them lie 
in a (K-1) dimensional plane.

e.g., for K=3, no 3 points are collinear and no 4 points are coplanar.

• Goal: count the number of threshold functions T(N,K) using the linear 
threshold function:

• Assume there is no bias . The capacity of a neuron with a bias can be 
obtained by replacing K by K+1 in final result (even ≠ general position).

w0
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of its weights is a real number and so can convey an infinite number of bits’.
We exclude this answer by saying that the receiver is not able to examine the
weights directly, nor is the receiver allowed to probe the weights by observing
the output of the neuron for arbitrarily chosen inputs. We constrain the
receiver to observe the output of the neuron at the same fixed set of N points
{xn} that were in the training set. What matters now is how many different
distinguishable functions our neuron can produce, given that we can observe
the function only at these N points. How many different binary labellings of
N points can a linear threshold function produce? And how does this number
compare with the maximum possible number of binary labellings, 2N? If
nearly all of the 2N labellings can be realized by our neuron, then it is a
communication channel that can convey all N bits (the target values {tn})
with small probability of error. We will identify the capacity of the neuron as
the maximum value that N can have such that the probability of error is very
small. [We are departing a little from the definition of capacity in Chapter 9.]

We thus examine the following scenario. The sender is given a neuron
with K inputs and a data set DN which is a labelling of N points. The
sender uses an adaptive algorithm to try to find a w that can reproduce this
labelling exactly. We will assume the algorithm finds such a w if it exists. The
receiver then evaluates the threshold function on the N input values. What
is the probability that all N bits are correctly reproduced? How large can N
become, for a given K, without this probability becoming substantially less
than one?

General position

One technical detail needs to be pinned down: what set of inputs {xn} are we
considering? Our answer might depend on this choice. We will assume that
the points are in general position.

Definition 40.1 A set of points {xn} in K-dimensional space are in general
position if any subset of size ≤ K is linearly independent, and no K + 1 of
them lie in a (K − 1)-dimensional plane.

In K = 3 dimensions, for example, a set of points are in general position if no
three points are colinear and no four points are coplanar. The intuitive idea is
that points in general position are like random points in the space, in terms of
the linear dependences between points. You don’t expect three random points
in three dimensions to lie on a straight line.

The linear threshold function

The neuron we will consider performs the function

y = f

(
K∑

k=1

wkxk

)

(40.1)

where

f(a) =
{

1 a > 0
0 a ≤ 0. (40.2)

We will not have a bias w0; the capacity for a neuron with a bias can be
obtained by replacing K by K + 1 in the final result below, i.e., considering
one of the inputs to be fixed to 1. (These input points would not then be in
general position; the derivation still works.)
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Counting T(N,K)

• Goal: count T(N,K) = # distinct threshold functions on N points in general 
positions in K dimensions.

• Start with some special cases and derive recurrence relation.

• K=1, any N:

Only one weight ; by changing its sign, we can realize {red=1, blue=0} 
or {red=0, blue=1}, hence T(N,1)=2.

• N=1, any K: only one point  so the two possible labelings can be 
realized by , hence, T(1,K)=2.

w1

x(1)

w = ± x(1)

0
x



Counting T(N,K)
• K=2, any N: 

• Spin the separating line around the origin:

• Cross one point at a time (general positions);

• In one revolution, every point is passed over twice.

⇒  which is  for  (not all binary functions can 
be realized by a linear threshold function).

T(N,2) = 2N < 2N N ≥ 3

x1

x2



Counting T(N,2) in Weight Space
40.3: Counting threshold functions 485

(a)
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x2

x(1)

(b)

w1

w2

(1)

(0)

Figure 40.2. One data point in a
two-dimensional input space, and
the two regions of weight space
that give the two alternative
labellings of that point.

40.3 Counting threshold functions

Let us denote by T (N,K) the number of distinct threshold functions on N
points in general position in K dimensions. We will derive a formula for
T (N,K).

To start with, let us work out a few cases by hand.

In K = 1 dimension, for any N

The N points lie on a line. By changing the sign of the one weight w1 we can
label all points on the right side of the origin 1 and the others 0, or vice versa.
Thus there are two distinct threshold functions. T (N, 1) = 2.

With N = 1 point, for any K

If there is just one point x(1) then we can realize both possible labellings by
setting w = ±x(1). Thus T (1,K) = 2.

In K = 2 dimensions

In two dimensions with N points, we are free to spin the separating line around
the origin. Each time the line passes over a point we obtain a new function.
Once we have spun the line through 360 degrees we reproduce the function
we started from. Because the points are in general position, the separating
plane (line) crosses only one point at a time. In one revolution, every point
is passed over twice. There are therefore 2N distinct threshold functions.
T (N, 2) = 2N .

Comparing with the total number of binary functions, 2N , we may note
that for N ≥ 3, not all binary functions can be realized by a linear threshold
function. One famous example of an unrealizable function with N = 4 and
K = 2 is the exclusive-or function on the points x = (±1,±1). [These points
are not in general position, but you may confirm that the function remains
unrealizable even if the points are perturbed into general position.]

In K = 2 dimensions, from the point of view of weight space

There is another way of visualizing this problem. Instead of visualizing a
plane separating points in the two-dimensional input space, we can consider
the two-dimensional weight space, colouring regions in weight space different
colours if they label the given datapoints differently. We can then count the
number of threshold functions by counting how many distinguishable regions
there are in weight space. Consider first the set of weight vectors in weight

486 40 — Capacity of a Single Neuron

(a)

x1

x2

x(1)x(2)
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w1
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(0,0)

(1,0)

(0,1)

Figure 40.3. Two data points in a
two-dimensional input space, and
the four regions of weight space
that give the four alternative
labellings.

(a)

x1
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x(1)x(2)

x(3)

(b)

w1

w2

(1,1,0)
(1,0,0)

(0,1,1)

(0,0,1)

(1,0,1)

(0,1,0)

Figure 40.4. Three data points in
a two-dimensional input space,
and the six regions of weight
space that give alternative
labellings of those points. In this
case, the labellings (0, 0, 0) and
(1, 1, 1) cannot be realized. For
any three points in general
position there are always two
labellings that cannot be realized.

space that classify a particular example x(n) as a 1. For example, figure 40.2a
shows a single point in our two-dimensional x-space, and figure 40.2b shows
the two corresponding sets of points in w-space. One set of weight vectors
occupy the half space

x(n)·w > 0, (40.3)

and the others occupy x(n)·w < 0. In figure 40.3a we have added a second
point in the input space. There are now 4 possible labellings: (1, 1), (1, 0),
(0, 1), and (0, 0). Figure 40.3b shows the two hyperplanes x(1)·w = 0 and
x(2)·w = 0 which separate the sets of weight vectors that produce each of
these labellings. When N = 3 (figure 40.4), weight space is divided by three
hyperplanes into six regions. Not all of the eight conceivable labellings can be
realized. Thus T (3, 2) = 6.

In K = 3 dimensions

We now use this weight space visualization to study the three dimensional
case.

Let us imagine adding one point at a time and count the number of thresh-
old functions as we do so. When N = 2, weight space is divided by two hy-
perplanes x(1)·w = 0 and x(2)·w = 0 into four regions; in any one region all
vectors w produce the same function on the 2 input vectors. Thus T (2, 3) = 4.

Adding a third point in general position produces a third plane in w space,
so that there are 8 distinguishable regions. T (3, 3) = 8. The three bisecting
planes are shown in figure 40.5a.

At this point matters become slightly more tricky. As figure 40.5b illus-
trates, the fourth plane in the three-dimensional w space cannot transect all
eight of the sets created by the first three planes. Six of the existing regions
are cut in two and the remaining two are unaffected. So T (4, 3) = 14. Two

T(1,2) = 2 T(2,2) = 4

T(3,2) = 6
Each point defines a hyperplane
in the weight space that produce
2 labelings:

x(n) ⋅ w = 0



Counting T(N,3) in Weight Space

T(3,3) = 8 T(4,3) = 14
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(a) (b)

Figure 40.5. Weight space
illustrations for T (3, 3) and
T (4, 3). (a) T (3, 3) = 8. Three
hyperplanes (corresponding to
three points in general position)
divide 3-space into 8 regions,
shown here by colouring the
relevant part of the surface of a
hollow, semi-transparent cube
centred on the origin. (b)
T (4, 3) = 14. Four hyperplanes
divide 3-space into 14 regions, of
which this figure shows 13 (the
14th region is out of view on the
right-hand face. Compare with
figure 40.5a: all of the regions
that are not coloured white have
been cut into two.

K
N 1 2 3 4 5 6 7 8

1 2 2 2 2 2 2 2 2
2 2 4 4
3 2 6 8
4 2 8 14
5 2 10
6 2 12 Table 40.6. Values of T (N, K)

deduced by hand.

(a) (b)

(c)

Figure 40.7. Illustration of the
cutting process going from T (3, 3)
to T (4, 3). (a) The eight regions
of figure 40.5a with one added
hyperplane. All of the regions
that are not coloured white have
been cut into two. (b) Here, the
hollow cube has been made solid,
so we can see which regions are
cut by the fourth plane. The front
half of the cube has been cut
away. (c) This figure shows the
new two dimensional hyperplane,
which is divided into six regions
by the three one-dimensional
hyperplanes (lines) which cross it.
Each of these regions corresponds
to one of the three-dimensional
regions in figure 40.7a which is
cut into two by this new
hyperplane. This shows that
T (4, 3)− T (3, 3) = 6. Figure 40.7c
should be compared with figure
40.4b.
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Recurrence Relation

• Adding an N-th hyperplane in K dimensions bisects T(N-1,K-1) of the 
T(N-1,K) regions that were created by the previous N-1 hyperplanes.

• subject to the boundary conditions: T(N,1)=2 and T(1,K)=2.

• The recurrence relation is satisfied by the Pascal’s triangle: 

• Convention:  for  or . C(N, K) ≡ 0 K > N K < 0

T(N, K ) = 2T(N − 1,K − 1) + [T(N − 1,K ) − T(N − 1,K − 1)] = T(N − 1,K ) + T(N − 1,K − 1)
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of the binary functions on 4 points in 3 dimensions cannot be realized by a
linear threshold function.

We have now filled in the values of T (N,K) shown in table 40.6. Can we
obtain any insights into our derivation of T (4, 3) in order to fill in the rest of
the table for T (N,K)? Why was T (4, 3) greater than T (3, 3) by six?

Six is the number of regions that the new hyperplane bisected in w-space
(figure 40.7a b). Equivalently, if we look in the K−1 dimensional subspace
that is the Nth hyperplane, that subspace is divided into six regions by the
N−1 previous hyperplanes (figure 40.7c). Now this is a concept we have met
before. Compare figure 40.7c with figure 40.4b. How many regions are created
by N − 1 hyperplanes in a K−1 dimensional space? Why, T (N−1,K−1), of
course! In the present case N = 4, K = 3, we can look up T (3, 2) = 6 in the
previous section. So

T (4, 3) = T (3, 3) + T (3, 2). (40.4)

Recurrence relation for any N, K

Generalizing this picture, we see that when we add an Nth hyperplane in K
dimensions, it will bisect T (N−1,K−1) of the T (N−1,K) regions that were
created by the previous N −1 hyperplanes. Therefore, the total number of
regions obtained after adding the Nth hyperplane is 2T (N−1,K−1) (since
T (N−1,K−1) out of T (N−1,K) regions are split in two) plus the remaining
T (N−1,K) − T (N−1,K−1) regions not split by the Nth hyperplane, which
gives the following equation for T (N,K):

T (N,K) = T (N−1,K) + T (N−1,K−1). (40.5)

Now all that remains is to solve this recurrence relation given the boundary
conditions T (N, 1) = 2 and T (1,K) = 2.

Does the recurrence relation (40.5) look familiar? Maybe you remember
building Pascal’s triangle by adding together two adjacent numbers in one row
to get the number below. The N,K element of Pascal’s triangle is equal to

C(N,K) ≡
(

N

K

)
≡ N !

(N − K)!K!
. (40.6)

K
N 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1

Table 40.8. Pascal’s triangle.

Combinations
(N
K

)
satisfy the equation

C(N,K) = C(N−1,K−1) + C(N−1,K), for all N > 0. (40.7)

[Here we are adopting the convention that
(N
K

)
≡ 0 if K > N or K < 0.]

So
(N
K

)
satisfies the required recurrence relation (40.5). This doesn’t mean

T (N,K) =
(N
K

)
, since many functions can satisfy one recurrence relation.
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Solving the Recurrence Relation
• Even C(N,K) satisfies the same recurrence relation as T(N,K), it does 

not mean T(N,K)=C(N,K).

• Solution: T(N,K)=linear combination of C(N+𝜶, K + 𝜷) subject to 
boundary conditions: T(N,1)=2 and T(1,K)=2.

• equal to # of binary labelings  for all N ≤ K 

• VC( Vapnik–Chervonenkis) dimension of a class of functions = 
maximum # of points on which any arbitrary labelling can be realized.

• VC dimension of binary threshold function on K dimension = K.

2N
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Figure 40.9. The fraction of functions on N points in K dimensions that are linear threshold functions,
T (N, K)/2N , shown from various viewpoints. In (a) we see the dependence on K, which
is approximately an error function passing through 0.5 at K = N/2; the fraction reaches 1
at K = N . In (b) we see the dependence on N , which is 1 up to N = K and drops sharply
at N = 2K. Panel (c) shows the dependence on N/K for K = 1000. There is a sudden
drop in the fraction of realizable labellings when N = 2K. Panel (d) shows the values of
log2 T (N, K) and log2 2N as a function of N for K = 1000. These figures were plotted
using the approximation of T/2N by the error function.
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But perhaps we can express T (N,K) as a linear superposition of combination
functions of the form Cα,β(N,K) ≡

(N+α
K+β

)
. By comparing tables 40.8 and

40.6 we can see how to satisfy the boundary conditions: we simply need to
translate Pascal’s triangle to the right by 1, 2, 3, . . .; superpose; add; multiply
by two, and drop the whole table by one line. Thus:

T (N,K) = 2
K−1∑

k=0

(
N−1

k

)
. (40.8)

Using the fact that the Nth row of Pascal’s triangle sums to 2N , that is,∑N−1
k=0

(N−1
k

)
= 2N−1, we can simplify the cases where K−1 ≥ N−1.

T (N,K) =
{

2N K ≥ N

2
∑K−1

k=0

(N−1
k

)
K < N.

(40.9)

Interpretation

It is natural to compare T (N,K) with the total number of binary functions on
N points, 2N . The ratio T (N,K)/2N tells us the probability that an arbitrary
labelling {tn}N

n=1 can be memorized by our neuron. The two functions are
equal for all N ≤ K. The line N = K is thus a special line, defining the
maximum number of points on which any arbitrary labelling can be realized.
This number of points is referred to as the Vapnik–Chervonenkis dimension
(VC dimension) of the class of functions. The VC dimension of a binary
threshold function on K dimensions is thus K.
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Figure 40.9. The fraction of functions on N points in K dimensions that are linear threshold functions,
T (N, K)/2N , shown from various viewpoints. In (a) we see the dependence on K, which
is approximately an error function passing through 0.5 at K = N/2; the fraction reaches 1
at K = N . In (b) we see the dependence on N , which is 1 up to N = K and drops sharply
at N = 2K. Panel (c) shows the dependence on N/K for K = 1000. There is a sudden
drop in the fraction of realizable labellings when N = 2K. Panel (d) shows the values of
log2 T (N, K) and log2 2N as a function of N for K = 1000. These figures were plotted
using the approximation of T/2N by the error function.
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Using the fact that the Nth row of Pascal’s triangle sums to 2N , that is,∑N−1
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(N−1
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)
= 2N−1, we can simplify the cases where K−1 ≥ N−1.

T (N,K) =
{

2N K ≥ N
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)
K < N.

(40.9)

Interpretation

It is natural to compare T (N,K) with the total number of binary functions on
N points, 2N . The ratio T (N,K)/2N tells us the probability that an arbitrary
labelling {tn}N

n=1 can be memorized by our neuron. The two functions are
equal for all N ≤ K. The line N = K is thus a special line, defining the
maximum number of points on which any arbitrary labelling can be realized.
This number of points is referred to as the Vapnik–Chervonenkis dimension
(VC dimension) of the class of functions. The VC dimension of a binary
threshold function on K dimensions is thus K.



Interpretation

•  tells us the probability that an arbitrary labelling can be 
memorized by our neuron. 

• A single neuron can almost certainly memorize up to N = 2K random 
binary labels perfectly, but will almost certainly fail to memorize more. 

T(N, K)/2N
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Figure 40.9. The fraction of functions on N points in K dimensions that are linear threshold functions,
T (N, K)/2N , shown from various viewpoints. In (a) we see the dependence on K, which
is approximately an error function passing through 0.5 at K = N/2; the fraction reaches 1
at K = N . In (b) we see the dependence on N , which is 1 up to N = K and drops sharply
at N = 2K. Panel (c) shows the dependence on N/K for K = 1000. There is a sudden
drop in the fraction of realizable labellings when N = 2K. Panel (d) shows the values of
log2 T (N, K) and log2 2N as a function of N for K = 1000. These figures were plotted
using the approximation of T/2N by the error function.
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But perhaps we can express T (N,K) as a linear superposition of combination
functions of the form Cα,β(N,K) ≡

(N+α
K+β

)
. By comparing tables 40.8 and

40.6 we can see how to satisfy the boundary conditions: we simply need to
translate Pascal’s triangle to the right by 1, 2, 3, . . .; superpose; add; multiply
by two, and drop the whole table by one line. Thus:

T (N,K) = 2
K−1∑

k=0

(
N−1

k

)
. (40.8)

Using the fact that the Nth row of Pascal’s triangle sums to 2N , that is,∑N−1
k=0

(N−1
k

)
= 2N−1, we can simplify the cases where K−1 ≥ N−1.

T (N,K) =
{

2N K ≥ N

2
∑K−1

k=0

(N−1
k

)
K < N.

(40.9)

Interpretation

It is natural to compare T (N,K) with the total number of binary functions on
N points, 2N . The ratio T (N,K)/2N tells us the probability that an arbitrary
labelling {tn}N

n=1 can be memorized by our neuron. The two functions are
equal for all N ≤ K. The line N = K is thus a special line, defining the
maximum number of points on which any arbitrary labelling can be realized.
This number of points is referred to as the Vapnik–Chervonenkis dimension
(VC dimension) of the class of functions. The VC dimension of a binary
threshold function on K dimensions is thus K.

The capacity of a linear 
threshold neuron, for 
large K, is 2 bits/weight. 



Outline of the Course

• Variational Methods

• Generative Adversarial Networks

• Normalizing Flows

• Reinforcement Learning

• Applications in Physics

Where do we stand?

• Basic of Machine Learning

• Optimizers

• Regression

• Logistic/Multi-class classification

• A survey of classifiers

• Neural Networks

• Unsupervised learning



Survey of Classifiers



Overview

• There are several alternatives to neural network classifiers, I will give 
a brief overview on how they work: 

• Decision Trees

• Support Vector Machines 

• Bagging

• Boosting

• Random Forests 

• Why? Because they work very well in several situations and are 
sometimes easier to interpret. 



Decision Trees

Condition 1

Condition 2 Condition 3

True

True True FalseFalse

False

Root node

Yes
Leaf node

Branches



Decision Trees

• Depth of tree = maximum number of splitting conditions.

• Stop growing the tree when 1) all items on a branch have the same 
features (values) or 2) other stopping criterion is met.

• Usually have maximum criterion to avoid overfitting.

• At each splitting node, look for features which provide the best 
splitting condition. How do we quantify best?

• Maximize “information gain”:

Gain (S, 𝒜) = Entropy (S) − ∑
ν∈𝒜

|Sν |
|S |

Entropy (Sν); Entropy (S) = − ∑
i

pi log2 pi

set attributes size of set



Decision Trees: ExampleDecision Trees
Example

14

Day Outlook Temp. Humidity Wind Go hiking? 
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

How do we decide 
whether to go hiking?



Decision Trees: Example
Decision Trees
Example

14

Day Outlook Temp. Humidity Wind Go hiking? 
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

How do we decide 
whether to go hiking?

What conditions should we pick?

Entropy (S) = −
5
14

log
5
14

−
9
14

log
9
14

= 1.245

Entropy (S, outlook = sunny) = −
2
5

log
2
5

−
3
5

log
3
5

= 0.971

Entropy (S, outlook = overcast) = 0

Entropy (S, outlook = rain) = −
3
5

log
3
5

−
2
5

log
2
5

= 0.971

irrespective of outlook

2 yes and 3 no

all yes

3 yes and 2 no

Gain (S, outlook)

−
5
14

Entropy (S, outlook = sunny)

−
4
14

Entropy (S, outlook = outcast)

−
5
14

Entropy (S, outlook = rain)

= Entropy (S)

= 0.246



Decision Trees: Example
Decision Trees
Example

14

Day Outlook Temp. Humidity Wind Go hiking? 
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

How do we decide 
whether to go hiking?

What conditions should we pick?

Gain (S, Outlook) = 0.246

Gain (S, Humidity) = 0.151

Gain (S, Wind) = 0.048

Gain (S, Temp.) = 0.029

⇒ Choose Outlook maximizes the information gain



Decision Trees: Hiking Example

Outlook

Humidity Windy

Sunny

Normal Weak StrongHigh

Rain

Root node

Yes
Leaf node

Branches Overcast

Yes

No Yes No



Gini vs Entropy

Entropy (S) = − ∑
i

pi log2 pi

Gini (S) = 1 − ∑
i

p2
i = 1 − p2 − (1 − p)2 = − 2p2 + 2p

two classes

options in sklearn
implementation



Summary

• Capacity of Perceptron = 2 bits/weight

• Survey of classifiers

• Decision Trees

• How can use decision tree for regression?


