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Lecture 8: Support Vector Machine (SVM)



Recap of Lecture 7

• Capacity of Perceptron = 2 bits/weight

• Survey of classifiers

• Decision Trees

• How can we use decision tree for regression?



Outline for today

• Support Vector Machines: functional and geometric margins

• Optimal margin classifier

• Lagrange duality

• Kernel Methods 

Ref: Andrew Ng’s Lecture Notes: https://sgfin.github.io/files/notes/
CS229_Lecture_Notes.pdf 

https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf
https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf


Support Vector Machines
• Among the best off-the-shelf supervised learning algorithms.

• The idea of margins: separating data with a large “gap”.

• Start with linear separable patterns.

• Kernel methods allow us to generalize this to non-linear separation.
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θTx(i) ! 0 whenever y(i) = 0, since this would reflect a very confident (and
correct) set of classifications for all the training examples. This seems to be
a nice goal to aim for, and we’ll soon formalize this idea using the notion of
functional margins.

For a different type of intuition, consider the following figure, in which x’s
represent positive training examples, o’s denote negative training examples,
a decision boundary (this is the line given by the equation θTx = 0, and
is also called the separating hyperplane) is also shown, and three points
have also been labeled A, B and C.
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Notice that the point A is very far from the decision boundary. If we are
asked to make a prediction for the value of y at A, it seems we should be
quite confident that y = 1 there. Conversely, the point C is very close to
the decision boundary, and while it’s on the side of the decision boundary
on which we would predict y = 1, it seems likely that just a small change to
the decision boundary could easily have caused our prediction to be y = 0.
Hence, we’re much more confident about our prediction at A than at C. The
point B lies in-between these two cases, and more broadly, we see that if
a point is far from the separating hyperplane, then we may be significantly
more confident in our predictions. Again, informally we think it’d be nice if,
given a training set, we manage to find a decision boundary that allows us
to make all correct and confident (meaning far from the decision boundary)
predictions on the training examples. We’ll formalize this later using the
notion of geometric margins.



Margins: Intuition

• Logistic regression:  if  and 0 otherwise.

• High confidence if  s.t.  or  in the training set: 
large functional margin.

• Decision boundary (or separating hyperplane):

hθ = g(θT x) = 1 θT x ≥ 0
∃θ θT x ≫ 0 θT x ≪ 0
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Functional Margins

• Use  instead of  as binary output.

• The linear classifier:

• Define the functional margin of a training sample:

• To maximize the functional margin,  and 
.

• Large functional margin represents a confident and a correct 
prediction.

y ∈ {−1,1} {0,1}

wT x + b ≫ 0 if y(i) = 1
wT x + b ≪ 0 if y(i) = − 1

hw,b(x) = g(wT x + b) ; g(z) = 1 if z ≥ 0 and − 1 otherwise
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2 Notation

To make our discussion of SVMs easier, we’ll first need to introduce a new
notation for talking about classification. We will be considering a linear
classifier for a binary classification problem with labels y and features x.
From now, we’ll use y ∈ {−1, 1} (instead of {0, 1}) to denote the class labels.
Also, rather than parameterizing our linear classifier with the vector θ, we
will use parameters w, b, and write our classifier as

hw,b(x) = g(wTx+ b).

Here, g(z) = 1 if z ≥ 0, and g(z) = −1 otherwise. This “w, b” notation
allows us to explicitly treat the intercept term b separately from the other
parameters. (We also drop the convention we had previously of letting x0 = 1
be an extra coordinate in the input feature vector.) Thus, b takes the role of
what was previously θ0, and w takes the role of [θ1 . . . θn]T .

Note also that, from our definition of g above, our classifier will directly
predict either 1 or −1 (cf. the perceptron algorithm), without first going
through the intermediate step of estimating the probability of y being 1
(which was what logistic regression did).

3 Functional and geometric margins

Let’s formalize the notions of the functional and geometric margins. Given a
training example (x(i), y(i)), we define the functional margin of (w, b) with
respect to the training example

γ̂(i) = y(i)(wTx+ b).

Note that if y(i) = 1, then for the functional margin to be large (i.e., for
our prediction to be confident and correct), we need wTx + b to be a large
positive number. Conversely, if y(i) = −1, then for the functional margin
to be large, we need wTx + b to be a large negative number. Moreover, if
y(i)(wTx + b) > 0, then our prediction on this example is correct. (Check
this yourself.) Hence, a large functional margin represents a confident and a
correct prediction.

For a linear classifier with the choice of g given above (taking values in
{−1, 1}), there’s one property of the functional margin that makes it not a
very good measure of confidence, however. Given our choice of g, we note that
if we replace w with 2w and b with 2b, then since g(wTx+b) = g(2wTx+2b),



Functional Margins
• However, an undesirable feature of this measure is that it is not 

invariant under rescaling, e.g.,:

• This increases the functional margin but this rescaling should not 
change the decision .

• Seems sensible to impose some normalization condition, e.g., 
 and

• Given a training set , define the 
functional margin wrt the set S:

hw,b(x)

| |w | |2 = 1

S = {(x(i), y(i)); i = 1,…, n}

w → 2w , b → 2b , g(wT x + b) = g(2wT x + 2b)
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this would not change hw,b(x) at all. I.e., g, and hence also hw,b(x), depends
only on the sign, but not on the magnitude, of wTx+ b. However, replacing
(w, b) with (2w, 2b) also results in multiplying our functional margin by a
factor of 2. Thus, it seems that by exploiting our freedom to scale w and b,
we can make the functional margin arbitrarily large without really changing
anything meaningful. Intuitively, it might therefore make sense to impose
some sort of normalization condition such as that ||w||2 = 1; i.e., we might
replace (w, b) with (w/||w||2, b/||w||2), and instead consider the functional
margin of (w/||w||2, b/||w||2). We’ll come back to this later.

Given a training set S = {(x(i), y(i)); i = 1, . . . , m}, we also define the
function margin of (w, b) with respect to S to be the smallest of the functional
margins of the individual training examples. Denoted by γ̂, this can therefore
be written:

γ̂ = min
i=1,...,m

γ̂(i).

Next, let’s talk about geometric margins. Consider the picture below:

wA

γ

B

(i)

The decision boundary corresponding to (w, b) is shown, along with the
vector w. Note that w is orthogonal (at 90◦) to the separating hyperplane.
(You should convince yourself that this must be the case.) Consider the
point at A, which represents the input x(i) of some training example with
label y(i) = 1. Its distance to the decision boundary, γ(i), is given by the line
segment AB.

How can we find the value of γ(i)? Well, w/||w|| is a unit-length vector
pointing in the same direction as w. Since A represents x(i), we therefore

(w, b) → (w/ | |w | |2 , b/ | |w | |2 )



Geometric Margins

•  is orthogonal to the separating hyperplane (convince yourself):

• Maximizing the margin means maximizing the distance  to the 
decision boundary.

w

γ(i)
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Geometric Margins

• Point B is given by 

• The above was derived for a positive training sample. Generally:
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find that the point B is given by x(i) − γ(i) · w/||w||. But this point lies on
the decision boundary, and all points x on the decision boundary satisfy the
equation wTx+ b = 0. Hence,

wT

(

x(i) − γ(i) w

||w||

)

+ b = 0.

Solving for γ(i) yields

γ(i) =
wTx(i) + b

||w||
=

(

w

||w||

)T

x(i) +
b

||w||
.

This was worked out for the case of a positive training example at A in the
figure, where being on the “positive” side of the decision boundary is good.
More generally, we define the geometric margin of (w, b) with respect to a
training example (x(i), y(i)) to be

γ(i) = y(i)
(

(

w

||w||

)T

x(i) +
b

||w||

)

.

Note that if ||w|| = 1, then the functional margin equals the geometric
margin—this thus gives us a way of relating these two different notions of
margin. Also, the geometric margin is invariant to rescaling of the parame-
ters; i.e., if we replace w with 2w and b with 2b, then the geometric margin
does not change. This will in fact come in handy later. Specifically, because
of this invariance to the scaling of the parameters, when trying to fit w and b
to training data, we can impose an arbitrary scaling constraint on w without
changing anything important; for instance, we can demand that ||w|| = 1, or
|w1| = 5, or |w1 + b| + |w2| = 2, and any of these can be satisfied simply by
rescaling w and b.

Finally, given a training set S = {(x(i), y(i)); i = 1, . . . , m}, we also define
the geometric margin of (w, b) with respect to S to be the smallest of the
geometric margins on the individual training examples:

γ = min
i=1,...,m

γ(i).

4 The optimal margin classifier

Given a training set, it seems from our previous discussion that a natural
desideratum is to try to find a decision boundary that maximizes the (ge-
ometric) margin, since this would reflect a very confident set of predictions

For point B to lie on the decision boundary:
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Geometric Margins

• Comparing the functional margin with the geometric margin:

• They coincide if  but the geometric margin has the 
advantage that it is invariant under arbitrary rescaling:

• The geometric margin wrt to a training set S is:

| |w | | = 1
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| |W | | = 1 , or |w |1 = 5 , or |w1 + b | + |w2 | = 2



Optimal Margin Classifier

• Find a decision boundary that maximizes the margin → a classifier 
that separates the positive/negative training samples with a gap.

• Optimization problem:

• Each training sample has functional margin at least  ; moreover, the 
 constraint ensures functional margin=geometric margin.

• The  makes this a nasty minimization problem. Consider 
instead: 

γ
| |w | | = 1

| |w | | = 1
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on the training set and a good “fit” to the training data. Specifically, this
will result in a classifier that separates the positive and the negative training
examples with a “gap” (geometric margin).

For now, we will assume that we are given a training set that is linearly
separable; i.e., that it is possible to separate the positive and negative ex-
amples using some separating hyperplane. How we we find the one that
achieves the maximum geometric margin? We can pose the following opti-
mization problem:

maxγ,w,b γ

s.t. y(i)(wTx(i) + b) ≥ γ, i = 1, . . . , m

||w|| = 1.

I.e., we want to maximize γ, subject to each training example having func-
tional margin at least γ. The ||w|| = 1 constraint moreover ensures that the
functional margin equals to the geometric margin, so we are also guaranteed
that all the geometric margins are at least γ. Thus, solving this problem will
result in (w, b) with the largest possible geometric margin with respect to the
training set.

If we could solve the optimization problem above, we’d be done. But the
“||w|| = 1” constraint is a nasty (non-convex) one, and this problem certainly
isn’t in any format that we can plug into standard optimization software to
solve. So, let’s try transforming the problem into a nicer one. Consider:

maxγ,w,b

γ̂

||w||
s.t. y(i)(wTx(i) + b) ≥ γ̂, i = 1, . . . , m

Here, we’re going to maximize γ̂/||w||, subject to the functional margins all
being at least γ̂. Since the geometric and functional margins are related by
γ = γ̂/||w|, this will give us the answer we want. Moreover, we’ve gotten rid
of the constraint ||w|| = 1 that we didn’t like. The downside is that we now
have a nasty (again, non-convex) objective γ̂

||w|| function; and, we still don’t
have any off-the-shelf software that can solve this form of an optimization
problem.

Let’s keep going. Recall our earlier discussion that we can add an arbi-
trary scaling constraint on w and b without changing anything. This is the
key idea we’ll use now. We will introduce the scaling constraint that the
functional margin of w, b with respect to the training set must be 1:

γ̂ = 1.
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Since multiplying w and b by some constant results in the functional margin
being multiplied by that same constant, this is indeed a scaling constraint,
and can be satisfied by rescaling w, b. Plugging this into our problem above,
and noting that maximizing γ̂/||w|| = 1/||w|| is the same thing as minimizing
||w||2, we now have the following optimization problem:

minγ,w,b

1

2
||w||2

s.t. y(i)(wTx(i) + b) ≥ 1, i = 1, . . . , m

We’ve now transformed the problem into a form that can be efficiently
solved. The above is an optimization problem with a convex quadratic ob-
jective and only linear constraints. Its solution gives us the optimal mar-
gin classifier. This optimization problem can be solved using commercial
quadratic programming (QP) code.1

While we could call the problem solved here, what we will instead do is
make a digression to talk about Lagrange duality. This will lead us to our
optimization problem’s dual form, which will play a key role in allowing us to
use kernels to get optimal margin classifiers to work efficiently in very high
dimensional spaces. The dual form will also allow us to derive an efficient
algorithm for solving the above optimization problem that will typically do
much better than generic QP software.

5 Lagrange duality

Let’s temporarily put aside SVMs and maximum margin classifiers, and talk
about solving constrained optimization problems.

Consider a problem of the following form:

minw f(w)

s.t. hi(w) = 0, i = 1, . . . , l.

Some of you may recall how the method of Lagrange multipliers can be used
to solve it. (Don’t worry if you haven’t seen it before.) In this method, we
define the Lagrangian to be

L(w, β) = f(w) +
l
∑

i=1

βihi(w)

1You may be familiar with linear programming, which solves optimization problems
that have linear objectives and linear constraints. QP software is also widely available,
which allows convex quadratic objectives and linear constraints.
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Here, the βi’s are called the Lagrange multipliers. We would then find
and set L’s partial derivatives to zero:

∂L
∂wi

= 0;
∂L
∂βi

= 0,

and solve for w and β.
In this section, we will generalize this to constrained optimization prob-

lems in which we may have inequality as well as equality constraints. Due to
time constraints, we won’t really be able to do the theory of Lagrange duality
justice in this class,2 but we will give the main ideas and results, which we
will then apply to our optimal margin classifier’s optimization problem.

Consider the following, which we’ll call the primal optimization problem:

minw f(w)

s.t. gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , l.

To solve it, we start by defining the generalized Lagrangian

L(w,α, β) = f(w) +
k
∑

i=1

αigi(w) +
l
∑

i=1

βihi(w).

Here, the αi’s and βi’s are the Lagrange multipliers. Consider the quantity

θP(w) = max
α,β :αi≥0

L(w,α, β).

Here, the “P” subscript stands for “primal.” Let some w be given. If w
violates any of the primal constraints (i.e., if either gi(w) > 0 or hi(w) "= 0
for some i), then you should be able to verify that

θP(w) = max
α,β :αi≥0

f(w) +
k
∑

i=1

αigi(w) +
l
∑

i=1

βihi(w) (1)

= ∞. (2)

Conversely, if the constraints are indeed satisfied for a particular value of w,
then θP(w) = f(w). Hence,

θP(w) =

{

f(w) if w satisfies primal constraints
∞ otherwise.

2Readers interested in learning more about this topic are encouraged to read, e.g., R.
T. Rockarfeller (1970), Convex Analysis, Princeton University Press.
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Thus, θP takes the same value as the objective in our problem for all val-
ues of w that satisfies the primal constraints, and is positive infinity if the
constraints are violated. Hence, if we consider the minimization problem

min
w

θP(w) = min
w

max
α,β :αi≥0

L(w,α, β),

we see that it is the same problem (i.e., and has the same solutions as) our
original, primal problem. For later use, we also define the optimal value of
the objective to be p∗ = minw θP(w); we call this the value of the primal
problem.

Now, let’s look at a slightly different problem. We define

θD(α, β) = min
w

L(w,α, β).

Here, the “D” subscript stands for “dual.” Note also that whereas in the
definition of θP we were optimizing (maximizing) with respect to α, β, here
are are minimizing with respect to w.

We can now pose the dual optimization problem:

max
α,β :αi≥0

θD(α, β) = max
α,β :αi≥0

min
w

L(w,α, β).

This is exactly the same as our primal problem shown above, except that the
order of the “max” and the “min” are now exchanged. We also define the
optimal value of the dual problem’s objective to be d∗ = maxα,β :αi≥0 θD(w).

How are the primal and the dual problems related? It can easily be shown
that

d∗ = max
α,β :αi≥0

min
w

L(w,α, β) ≤ min
w

max
α,β :αi≥0

L(w,α, β) = p∗.

(You should convince yourself of this; this follows from the “maxmin” of a
function always being less than or equal to the “minmax.”) However, under
certain conditions, we will have

d∗ = p∗,

so that we can solve the dual problem in lieu of the primal problem. Let’s
see what these conditions are.

Suppose f and the gi’s are convex,3 and the hi’s are affine.4 Suppose
further that the constraints gi are (strictly) feasible; this means that there
exists some w so that gi(w) < 0 for all i.

3When f has a Hessian, then it is convex if and only if the Hessian is positive semi-
definite. For instance, f(w) = wTw is convex; similarly, all linear (and affine) functions
are also convex. (A function f can also be convex without being differentiable, but we
won’t need those more general definitions of convexity here.)

4I.e., there exists ai, bi, so that hi(w) = aTi w + bi. “Affine” means the same thing as
linear, except that we also allow the extra intercept term bi.
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problem.

Now, let’s look at a slightly different problem. We define

θD(α, β) = min
w

L(w,α, β).

Here, the “D” subscript stands for “dual.” Note also that whereas in the
definition of θP we were optimizing (maximizing) with respect to α, β, here
are are minimizing with respect to w.

We can now pose the dual optimization problem:
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min
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so that we can solve the dual problem in lieu of the primal problem. Let’s
see what these conditions are.

Suppose f and the gi’s are convex,3 and the hi’s are affine.4 Suppose
further that the constraints gi are (strictly) feasible; this means that there
exists some w so that gi(w) < 0 for all i.

3When f has a Hessian, then it is convex if and only if the Hessian is positive semi-
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are also convex. (A function f can also be convex without being differentiable, but we
won’t need those more general definitions of convexity here.)

4I.e., there exists ai, bi, so that hi(w) = aTi w + bi. “Affine” means the same thing as
linear, except that we also allow the extra intercept term bi.
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Lagrange Duality

• The optimal value of the dual problem’s objective is:

• Using the fact that “max min” of a function ≤  its “min max”:

• Under some conditions (known as the KKT conditions, given shortly):

• We can solve the dual problem in lieu of the primal problem.
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KKT Conditions
• Suppose  and the ’s are convex, and the ’s are affine and 

further that the constraints ’s are strictly feasible, meaning  s.t.

• Under these assumptions:

• there must  such that  solves the primal 
problem,  solve the dual problem, and

•  satisfy the Karush-Kuhn-Tucker (KKT) conditions:

f gi hi
gi ∃w

∃w*, α*, β* w*
α*, β*

w*, α*, β*

gi(w) < 0 ∀i
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Under our above assumptions, there must exist w∗,α∗, β∗ so that w∗ is the
solution to the primal problem, α∗, β∗ are the solution to the dual problem,
and moreover p∗ = d∗ = L(w∗,α∗, β∗). Moreover, w∗,α∗ and β∗ satisfy the
Karush-Kuhn-Tucker (KKT) conditions, which are as follows:

∂

∂wi

L(w∗,α∗, β∗) = 0, i = 1, . . . , n (3)

∂

∂βi

L(w∗,α∗, β∗) = 0, i = 1, . . . , l (4)

α∗
i gi(w

∗) = 0, i = 1, . . . , k (5)

gi(w
∗) ≤ 0, i = 1, . . . , k (6)

α∗ ≥ 0, i = 1, . . . , k (7)

Moreover, if some w∗,α∗, β∗ satisfy the KKT conditions, then it is also a
solution to the primal and dual problems.

We draw attention to Equation (5), which is called the KKT dual com-
plementarity condition. Specifically, it implies that if α∗

i > 0, then gi(w∗) =
0. (I.e., the “gi(w) ≤ 0” constraint is active, meaning it holds with equality
rather than with inequality.) Later on, this will be key for showing that the
SVM has only a small number of “support vectors”; the KKT dual comple-
mentarity condition will also give us our convergence test when we talk about
the SMO algorithm.

6 Optimal margin classifiers

Previously, we posed the following (primal) optimization problem for finding
the optimal margin classifier:

minγ,w,b

1

2
||w||2

s.t. y(i)(wTx(i) + b) ≥ 1, i = 1, . . . , m

We can write the constraints as

gi(w) = −y(i)(wTx(i) + b) + 1 ≤ 0.

We have one such constraint for each training example. Note that from the
KKT dual complementarity condition, we will have αi > 0 only for the train-
ing examples that have functional margin exactly equal to one (i.e., the ones
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• This property is key to showing that SVM has only a small number of 
support vectors. 
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Finding Optimal Margin Classifiers
• Recall our primal optimization problem:

• We can write the constraints as (one for each training sample):

• The KKT dual complementarity condition implies that  only for 
the training samples that have functional margin =1

αi > 0
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on the training set and a good “fit” to the training data. Specifically, this
will result in a classifier that separates the positive and the negative training
examples with a “gap” (geometric margin).

For now, we will assume that we are given a training set that is linearly
separable; i.e., that it is possible to separate the positive and negative ex-
amples using some separating hyperplane. How we we find the one that
achieves the maximum geometric margin? We can pose the following opti-
mization problem:

maxγ,w,b γ

s.t. y(i)(wTx(i) + b) ≥ γ, i = 1, . . . , m

||w|| = 1.

I.e., we want to maximize γ, subject to each training example having func-
tional margin at least γ. The ||w|| = 1 constraint moreover ensures that the
functional margin equals to the geometric margin, so we are also guaranteed
that all the geometric margins are at least γ. Thus, solving this problem will
result in (w, b) with the largest possible geometric margin with respect to the
training set.

If we could solve the optimization problem above, we’d be done. But the
“||w|| = 1” constraint is a nasty (non-convex) one, and this problem certainly
isn’t in any format that we can plug into standard optimization software to
solve. So, let’s try transforming the problem into a nicer one. Consider:

maxγ,w,b

γ̂

||w||
s.t. y(i)(wTx(i) + b) ≥ γ̂, i = 1, . . . , m

Here, we’re going to maximize γ̂/||w||, subject to the functional margins all
being at least γ̂. Since the geometric and functional margins are related by
γ = γ̂/||w|, this will give us the answer we want. Moreover, we’ve gotten rid
of the constraint ||w|| = 1 that we didn’t like. The downside is that we now
have a nasty (again, non-convex) objective γ̂

||w|| function; and, we still don’t
have any off-the-shelf software that can solve this form of an optimization
problem.

Let’s keep going. Recall our earlier discussion that we can add an arbi-
trary scaling constraint on w and b without changing anything. This is the
key idea we’ll use now. We will introduce the scaling constraint that the
functional margin of w, b with respect to the training set must be 1:

γ̂ = 1.
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corresponding to constraints that hold with equality, gi(w) = 0). Consider
the figure below, in which a maximum margin separating hyperplane is shown
by the solid line.

The points with the smallest margins are exactly the ones closest to the
decision boundary; here, these are the three points (one negative and two pos-
itive examples) that lie on the dashed lines parallel to the decision boundary.
Thus, only three of the αi’s—namely, the ones corresponding to these three
training examples—will be non-zero at the optimal solution to our optimiza-
tion problem. These three points are called the support vectors in this
problem. The fact that the number of support vectors can be much smaller
than the size the training set will be useful later.

Let’s move on. Looking ahead, as we develop the dual form of the prob-
lem, one key idea to watch out for is that we’ll try to write our algorithm
in terms of only the inner product 〈x(i), x(j)〉 (think of this as (x(i))Tx(j))
between points in the input feature space. The fact that we can express our
algorithm in terms of these inner products will be key when we apply the
kernel trick.

When we construct the Lagrangian for our optimization problem we have:

L(w, b,α) =
1

2
||w||2 −

m
∑

i=1

αi

[

y(i)(wTx(i) + b)− 1
]

. (8)

Note that there’re only “αi” but no “βi” Lagrange multipliers, since the
problem has only inequality constraints.

Let’s find the dual form of the problem. To do so, we need to first
minimize L(w, b,α) with respect to w and b (for fixed α), to get θD, which

only three , the corresponding
three points are called the support vectors;

# support vectors can be <<  
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we’ll do by setting the derivatives of L with respect to w and b to zero. We
have:

∇wL(w, b,α) = w −
m
∑

i=1

αiy
(i)x(i) = 0

This implies that

w =
m
∑

i=1

αiy
(i)x(i). (9)

As for the derivative with respect to b, we obtain

∂

∂b
L(w, b,α) =

m
∑

i=1

αiy
(i) = 0. (10)

If we take the definition of w in Equation (9) and plug that back into the
Lagrangian (Equation 8), and simplify, we get

L(w, b,α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj(x
(i))Tx(j) − b

m
∑

i=1

αiy
(i).

But from Equation (10), the last term must be zero, so we obtain

L(w, b,α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj(x
(i))Tx(j).

Recall that we got to the equation above by minimizing L with respect to w
and b. Putting this together with the constraints αi ≥ 0 (that we always had)
and the constraint (10), we obtain the following dual optimization problem:

maxα W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉.

s.t. αi ≥ 0, i = 1, . . . , m
m
∑

i=1

αiy
(i) = 0,

You should also be able to verify that the conditions required for p∗ =
d∗ and the KKT conditions (Equations 3–7) to hold are indeed satisfied in
our optimization problem. Hence, we can solve the dual in lieu of solving
the primal problem. Specifically, in the dual problem above, we have a
maximization problem in which the parameters are the αi’s. We’ll talk later
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Finding Optimal Margin Classifiers

• The dual optimization problem:

• Check that the KKT conditions are satisfied, so we can solve the dual 
problem in lieu of the primal problem:

• After fitting our model parameters to a training set, make a prediction 
at a new input point  depending on the value of: x
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about the specific algorithm that we’re going to use to solve the dual problem,
but if we are indeed able to solve it (i.e., find the α’s that maximize W (α)
subject to the constraints), then we can use Equation (9) to go back and find
the optimal w’s as a function of the α’s. Having found w∗, by considering
the primal problem, it is also straightforward to find the optimal value for
the intercept term b as

b∗ = −
maxi:y(i)=−1w

∗Tx(i) +mini:y(i)=1w
∗Tx(i)

2
. (11)

(Check for yourself that this is correct.)
Before moving on, let’s also take a more careful look at Equation (9),

which gives the optimal value of w in terms of (the optimal value of) α.
Suppose we’ve fit our model’s parameters to a training set, and now wish to
make a prediction at a new point input x. We would then calculate wTx+ b,
and predict y = 1 if and only if this quantity is bigger than zero. But
using (9), this quantity can also be written:

wTx+ b =

(

m
∑

i=1

αiy
(i)x(i)

)T

x+ b (12)

=
m
∑

i=1

αiy
(i)〈x(i), x〉+ b. (13)

Hence, if we’ve found the αi’s, in order to make a prediction, we have to
calculate a quantity that depends only on the inner product between x and
the points in the training set. Moreover, we saw earlier that the αi’s will all
be zero except for the support vectors. Thus, many of the terms in the sum
above will be zero, and we really need to find only the inner products between
x and the support vectors (of which there is often only a small number) in
order calculate (13) and make our prediction.

By examining the dual form of the optimization problem, we gained sig-
nificant insight into the structure of the problem, and were also able to write
the entire algorithm in terms of only inner products between input feature
vectors. In the next section, we will exploit this property to apply the ker-
nels to our classification problem. The resulting algorithm, support vector
machines, will be able to efficiently learn in very high dimensional spaces.

7 Kernels

Back in our discussion of linear regression, we had a problem in which the
input x was the living area of a house, and we considered performing regres-
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Summary

• Support Vector Machines: functional and geometric margins

• Optimal margin classifier

• Lagrange duality

• Kernel Methods 

 


