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Lecture 8: Support Vector Machine (SVM)



Recap of Lecture 7

Capacity of Perceptron = 2 bits/weight
Survey of classifiers
Decision Trees

How can we use decision tree for regression?



Outline for today

e Support Vector Machines: functional and geometric margins
e Optimal margin classifier
e [agrange duality

e Kernel Methods

Ref: Andrew Ng’s Lecture Notes: https://sgfin.github.io/files/notes/
CS229 Lecture Notes.pdf



https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf
https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf

Support Vector Machines

* Among the best off-the-shelf supervised learning algorithms.
 The idea of margins: separating data with a large “gap”.

e Start with linear separable patterns.

A

 Kernel methods allow us to generalize this to non-linear separation.



Margins: Intuition

o Logistic regression: i, = g(0'x) = 1if @' x > 0 and 0 otherwise.

o High confidence if 38 s.t. 87 x > 0 or 8’ x < 0 in the training set:

large functional margin.

e Decision boundary (or separating hyperplane):

/

low confidence

e— high confidence

separating hyperplane

0'x =0

maximize

geometric margin



Functional Margins

Usey € {—1,1} instead of {0,1} as binary output.

The linear classifier:
h,, ,(x) = gwlx +b) ; g(z) =11 z>0 and — 1 otherwise
Define the functional margin of a training sample:
A = 4D (T z + b)

To maximize the functional margin, wlix+b>0if y¥ =1 and
wix+b<0if y® =—1.

Large functional margin represents a confident and a correct
prediction.



Functional Margins

However, an undesirable feature of this measure is that it is not
invariant under rescaling, e.g.,:

w—=2w, b—2b, gwlx+b)=g2w!x+2b)
This increases the functional margin but this rescaling should not
change the decision £, ,(x).

Seems sensible to impose some normalization condition, e.g.,
| [w]|, =1and

w,b) = W/ ||wll,,bl/||wll,)

Given a training set S = {(x(i),y(i));i = 1,...,n}, define the
functional margin wrt the set S:



Geometric Margins

e W is orthogonal to the separating hyperplane (convince yourself):

e« Maximizing the margin means maximizing the distance y(i) to the
decision boundary.



Geometric Margins

e Point Bis given by ¥ — W . w/||w|]

For point B to lie on the decision boundary:

T (Z,;(z') _ W(z‘)L) L b=0.

| | w \1 b
) = 0 ( > O
[Jw| [Jw|



Geometric Margins

 Comparing the functional margin with the geometric margin:

T
2 (8) () (0T ORENON I G O S
VO =ytwie b)) 0 <<|w> ! +w>

« They coincide if | |w || = 1 but the geometric margin has the
advantage that it is invariant under arbitrary rescaling:

[[W[|=1,o0r|w|, =5,0r |w +b|+|[w,|=2

* The geometric margin wrt to a training set S is:



Optimal Margin Classifier

Find a decision boundary that maximizes the margin — a classifier
that separates the positive/negative training samples with a gap.

Optimization problem:

max%w,b Y
st. yD(wlz® +b)>~, i=1,...,m
[|lw|] = 1.

Each training sample has functional margin at least y ; moreover, the

| [w]| | = 1 constraint ensures functional margin=geometric margin.
The | |w]|| = 1 makes this a nasty minimization problem. Consider
instead:
gl ot eer
MAXywb T still difficult, non-convex

st yD(wla® +0) >4, i=1,...,m optimization problem



Optimal Margin Classifier

Instead, we can apply a rescaling of w and b to bring

§=1

The optimization problem can be turned into:

one with a convex quadratic objective and only linear constraints; can
be solved using commercial quadratic programming (QP) code.

The solution is the optimal margin classifier.

Lagrange duality (next) allows us to use kernels to get optimal margin
classifiers to work efficiently in a very high dimensional spaces.



Lagrange Duality

Consider solving constrained optimization problems of the form:

min,, f(w)
S.t. hz(w) = O, 1=1,..., .

Define the Lagrangian:

L(w, B) = f(w) + Z@-hi(w)

The optimized solution is given by: . e
— (); —

This can be generalized to constrained optimization problems with
inequalities as well. Consider this primal optimization problem:

0




Lagrange Duality

Define the generalized Lagrangian:

[
L(w,a, ) = f(w)+ Zazgz )+ Bihi(w)
Consider the quantity:

Op(w) = max L(w,a,[).

a,B:a; >0

If w violates any of the primal constraints:

o, a>0

!
Op(w) = max +Zozg )+ > Bihi(w)

= OQ.

Conversely, if the constraints are satisfied, 0,(w) = f(w), therefore:

f(w) if w satisfies primal constraints
00 otherwise.

Op(w) = {



Lagrange Duality

The minimization problem is equivalent to the original problem:

min fp(w) = min max L(w,a, ),
W w  o,B:0;>0

The optimal value of the objective = the value of the primal problem:

p* = min,, 6p(w)

Define the dual:
(91)(0475) — minﬁ(w,a,ﬁ)

The dual optimization problem:

0%?3122?220 HD((% 5) - oz,g:lgfczo mu%n L(w’ @, 6)



Lagrange Duality

The optimal value of the dual problem’s objective is:
d* = maxaﬁ:aizo @D(w)

Using the fact that “max min” of a function < its “min max”:

d* = ma in L < mi L ¥
, ax min (w,&yﬁ)_muljnmg:lgf{zo (w,a, B) = p

Under some conditions (known as the KKT conditions, given shortly):
d* — p*

We can solve the dual problem in lieu of the primal problem.



KKT Conditions

« Suppose f and the g;’s are convex, and the /s are affine and
further that the constraints g;’s are strictly feasible, meaning Jw s.t.

g(w) <0 Vi
* Under these assumptions:

o there must dw*, a*, /* such that w* solves the primal
problem, a™, * solve the dual problem, and

p* — d* — ﬁ(w*,@*,ﬁ*)

o W¥, a*, * satisfy the Karush-Kuhn-Tucker (KKT) conditions:

(;Z}iﬁ(w*,oz*,ﬁ*) = 0, i=1,....n
0 Lw* a*,f") = 0, 1=1 [
ag, e

a gi(w*) = 0, 1=1,...,k

g(w*)y < 0, i=1,...,k

of > 0, 1=1,....k



KKT Conditions

o If some w*, a*, /* satisfy the KKT conditions:

aiiﬁ(w*,oz*,ﬁ*) = 0, 1=1,...,n

0 Lw* a*,0%) = 0, i=1 [
a5 e

a;gi(w) = 0, i=1,...k

gi(w*) < 0, 1=1,...,k

of > 0, 1=1,...,k

then it is also a solution to the primal and dual problems.

 The middle equation is known as the dual complementarity condition
which implies that if al.* > (), then g;(w) = 0.

* This property is key to showing that SVM has only a small number of
support vectors.



Finding Optimal Margin Classifiers

e Recall our primal optimization problem:

Max. ,p 7Y
st yD(wlz®D +0)>~, i=1,...,m

[|w[l = 1.

* We can write the constraints as (one for each training sample):

gi(w) = =y (w2 +b) +1<0.

« The KKT dual complementarity condition implies that &; > O only for
the training samples that have functional margin =1

‘ only three a; > 0, the corresponding

x three points are called the support vectors;
o T N # support vectors can be << || S| |




Finding Optimal Margin Classifiers

Develop the dual problem, and express the algorithm in terms of
< x xU) > petween points in the input feature space (kernel trick).

The Lagrangian for our optimization problem has only a; but no f..
L(w, b, @) ——HwH2 Za we® 4 ) — 1]
To find Op:
Vo L(w,b,a) —w—iin;aiy(i)az(i) =0 %ﬁw b, a) Zozy()—o

Plugging back into the Lagrangian:

L(w,b,a) Za——zy y Py () x (])M)
1,7=1 1=1



Finding Optimal Margin Classifiers

* The dual optimization problem:

- L iy (i -
max, W(a)= Z o= Z y Dy Doga (2@ 20))
=1 ij=1

st. a; >0, 1=1,..., m

e Check that the KKT conditions are satisfied, so we can solve the dual
problem in lieu of the primal problem:

Em: ) (G e 1 0 (3) . «T,.(3)
w = Oézy(z)x(z) b* _ maXz:y(%):—l w T + mlnz:y(z)zl w T
= 2

1=1

e After fitting our model parameters to a training set, make a prediction
at a new input point x depending on the value of:

~ T N depends on inner
wiz +b = <Z ozz-y(i):c(i)> r+b = oy (29 ) + b, products, and only
=1 i=1 with support vectors




Summary

Support Vector Machines: functional and geometric margins
Optimal margin classifier
Lagrange duality

Kernel Methods



