
(Image: Fermilab/CERN)

PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

Lecture 9: Kernel Methods

Recap of Lecture 8

• Support Vector Machines: functional and geometric margins

• A simple example and animation:

https://www.youtube.com/watch?v=5zRmhOUjjGY

• Optimal margin classifier

• Lagrange duality

• Kernel Methods

Outline for today

• Kernel methods

• Soft margins

• Ensemble Methods

• Bagging

• Boosting

• Random Forest

Ref: Andrew Ng’s Lecture Notes: https://sgfin.github.io/files/notes/
CS229_Lecture_Notes.pdf and 1803.08823

https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf
https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf

Feature Maps
• So far we have been considering linear separable data, what if the output

is more accurately represented by a non-linear function e.g.

• Consider the function known as the feature map:

• is a linear function over .

ϕ : ℝ → ℝ4

y ϕ(x) : y = θ3x3 + θ2x2 + θ1x + θ0 = θTϕ(x)

CS229 Lecture Notes

Andrew Ng

updated by Tengyu Ma on October 5, 2019

Part V

Kernel Methods

1.1 Feature maps

Recall that in our discussion about linear regression, we considered the prob-
lem of predicting the price of a house (denoted by y) from the living area of
the house (denoted by x), and we fit a linear function of x to the training
data. What if the price y can be more accurately represented as a non-linear
function of x? In this case, we need a more expressive family of models than
linear models.

We start by considering fitting cubic functions y = θ3x3+ θ2x2+ θ1x+ θ0.
It turns out that we can view the cubic function as a linear function over
the a different set of feature variables (defined below). Concretely, let the
function φ : R → R4 be defined as

φ(x) =







1
x
x2

x3






∈ R

4. (1)

Let θ ∈ R4 be the vector containing θ0, θ1, θ2, θ3 as entries. Then we can
rewrite the cubic function in x as:

θ3x
3 + θ2x

2 + θ1x+ θ0 = θTφ(x)

Thus, a cubic function of the variable x can be viewed as a linear function
over the variables φ(x). To distinguish between these two sets of variables,

1

CS229 Lecture Notes

Andrew Ng

updated by Tengyu Ma on October 5, 2019

Part V

Kernel Methods

1.1 Feature maps

Recall that in our discussion about linear regression, we considered the prob-
lem of predicting the price of a house (denoted by y) from the living area of
the house (denoted by x), and we fit a linear function of x to the training
data. What if the price y can be more accurately represented as a non-linear
function of x? In this case, we need a more expressive family of models than
linear models.

We start by considering fitting cubic functions y = θ3x3+ θ2x2+ θ1x+ θ0.
It turns out that we can view the cubic function as a linear function over
the a different set of feature variables (defined below). Concretely, let the
function φ : R → R4 be defined as

φ(x) =







1
x
x2

x3






∈ R

4. (1)

Let θ ∈ R4 be the vector containing θ0, θ1, θ2, θ3 as entries. Then we can
rewrite the cubic function in x as:

θ3x
3 + θ2x

2 + θ1x+ θ0 = θTφ(x)

Thus, a cubic function of the variable x can be viewed as a linear function
over the variables φ(x). To distinguish between these two sets of variables,

1

attributes features

Kernels
• For linear functions, our algorithm for the optimal margin classifier

requires computing . This suggests that we should:

• The kernel may be inexpensive to compute, even though it is
expensive to calculate (extremely high dimensional vector).

• Using , we can get SVM to learn high dimensional feature
space given by without having to explicitly find/represent .

• Suppose and the Kernel is given by:

• What is the corresponding feature map ?

< x, z >

K(x, z)
ϕ(x)

K(x, z)
ϕ ϕ(x)

x, z ∈ ℝn

ϕ(x)

< x, z > → K(x, z) = < ϕ(x), ϕ(z) > = ϕ(x)Tϕ(z)

14

sion using the features x, x2 and x3 (say) to obtain a cubic function. To
distinguish between these two sets of variables, we’ll call the “original” input
value the input attributes of a problem (in this case, x, the living area).
When that is mapped to some new set of quantities that are then passed to
the learning algorithm, we’ll call those new quantities the input features.
(Unfortunately, different authors use different terms to describe these two
things, but we’ll try to use this terminology consistently in these notes.) We
will also let φ denote the feature mapping, which maps from the attributes
to the features. For instance, in our example, we had

φ(x) =





x
x2

x3



 .

Rather than applying SVMs using the original input attributes x, we may
instead want to learn using some features φ(x). To do so, we simply need to
go over our previous algorithm, and replace x everywhere in it with φ(x).

Since the algorithm can be written entirely in terms of the inner prod-
ucts 〈x, z〉, this means that we would replace all those inner products with
〈φ(x),φ(z)〉. Specificically, given a feature mapping φ, we define the corre-
sponding Kernel to be

K(x, z) = φ(x)Tφ(z).

Then, everywhere we previously had 〈x, z〉 in our algorithm, we could simply
replace it with K(x, z), and our algorithm would now be learning using the
features φ.

Now, given φ, we could easily compute K(x, z) by finding φ(x) and φ(z)
and taking their inner product. But what’s more interesting is that often,
K(x, z) may be very inexpensive to calculate, even though φ(x) itself may
be very expensive to calculate (perhaps because it is an extremely high di-
mensional vector). In such settings, by using in our algorithm an efficient
way to calculate K(x, z), we can get SVMs to learn in the high dimensional
feature space space given by φ, but without ever having to explicitly find or
represent vectors φ(x).

Let’s see an example. Suppose x, z ∈ Rn, and consider

K(x, z) = (xT z)2.

Kernels
• We can write the Kernel as:

• The feature map (for n=3):

• Computing takes time while computing takes only
 time (linear in the dim. of the input attributes).

• For a huge input dimension (say ~ 1000), this is a significant speedup.

ϕ(x) 𝒪(n2) K(x, z)
𝒪(n)

15

We can also write this as

K(x, z) =

(

n
∑

i=1

xizi

)(

n
∑

j=1

xizi

)

=
n
∑

i=1

n
∑

j=1

xixjzizj

=
n
∑

i,j=1

(xixj)(zizj)

Thus, we see that K(x, z) = φ(x)Tφ(z), where the feature mapping φ is given
(shown here for the case of n = 3) by

φ(x) =





























x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3





























.

Note that whereas calculating the high-dimensional φ(x) requires O(n2) time,
finding K(x, z) takes only O(n) time—linear in the dimension of the input
attributes.

For a related kernel, also consider

K(x, z) = (xT z + c)2

=
n
∑

i,j=1

(xixj)(zizj) +
n
∑

i=1

(
√
2cxi)(

√
2czi) + c2.

(Check this yourself.) This corresponds to the feature mapping (again shown

15

We can also write this as

K(x, z) =

(

n
∑

i=1

xizi

)(

n
∑

j=1

xizi

)

=
n
∑

i=1

n
∑

j=1

xixjzizj

=
n
∑

i,j=1

(xixj)(zizj)

Thus, we see that K(x, z) = φ(x)Tφ(z), where the feature mapping φ is given
(shown here for the case of n = 3) by

φ(x) =





























x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3





























.

Note that whereas calculating the high-dimensional φ(x) requires O(n2) time,
finding K(x, z) takes only O(n) time—linear in the dimension of the input
attributes.

For a related kernel, also consider

K(x, z) = (xT z + c)2

=
n
∑

i,j=1

(xixj)(zizj) +
n
∑

i=1

(
√
2cxi)(

√
2czi) + c2.

(Check this yourself.) This corresponds to the feature mapping (again shown

15

We can also write this as

K(x, z) =

(

n
∑

i=1

xizi

)(

n
∑

j=1

xizi

)

=
n
∑

i=1

n
∑

j=1

xixjzizj

=
n
∑

i,j=1

(xixj)(zizj)

Thus, we see that K(x, z) = φ(x)Tφ(z), where the feature mapping φ is given
(shown here for the case of n = 3) by

φ(x) =





























x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3





























.

Note that whereas calculating the high-dimensional φ(x) requires O(n2) time,
finding K(x, z) takes only O(n) time—linear in the dimension of the input
attributes.

For a related kernel, also consider

K(x, z) = (xT z + c)2

=
n
∑

i,j=1

(xixj)(zizj) +
n
∑

i=1

(
√
2cxi)(

√
2czi) + c2.

(Check this yourself.) This corresponds to the feature mapping (again shown

15

We can also write this as

K(x, z) =

(

n
∑

i=1

xizi

)(

n
∑

j=1

xizi

)

=
n
∑

i=1

n
∑

j=1

xixjzizj

=
n
∑

i,j=1

(xixj)(zizj)

Thus, we see that K(x, z) = φ(x)Tφ(z), where the feature mapping φ is given
(shown here for the case of n = 3) by

φ(x) =





























x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3





























.

Note that whereas calculating the high-dimensional φ(x) requires O(n2) time,
finding K(x, z) takes only O(n) time—linear in the dimension of the input
attributes.

For a related kernel, also consider

K(x, z) = (xT z + c)2

=
n
∑

i,j=1

(xixj)(zizj) +
n
∑

i=1

(
√
2cxi)(

√
2czi) + c2.

(Check this yourself.) This corresponds to the feature mapping (again shown

Kernels
• For a related Kernel:

• The corresponding feature map (for n=3):

• Computing still takes only time, even for more general:K(x, z) 𝒪(n)

15

We can also write this as

K(x, z) =

(

n
∑

i=1

xizi

)(

n
∑

j=1

xizi

)

=
n
∑

i=1

n
∑

j=1

xixjzizj

=
n
∑

i,j=1

(xixj)(zizj)

Thus, we see that K(x, z) = φ(x)Tφ(z), where the feature mapping φ is given
(shown here for the case of n = 3) by

φ(x) =





























x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3





























.

Note that whereas calculating the high-dimensional φ(x) requires O(n2) time,
finding K(x, z) takes only O(n) time—linear in the dimension of the input
attributes.

For a related kernel, also consider

K(x, z) = (xT z + c)2

=
n
∑

i,j=1

(xixj)(zizj) +
n
∑

i=1

(
√
2cxi)(

√
2czi) + c2.

(Check this yourself.) This corresponds to the feature mapping (again shown

16

for n = 3)

φ(x) =













































x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3√
2cx1√
2cx2√
2cx3

c













































,

and the parameter c controls the relative weighting between the xi (first
order) and the xixj (second order) terms.

More broadly, the kernel K(x, z) = (xT z + c)d corresponds to a feature
mapping to an

(

n+d
d

)

feature space, corresponding of all monomials of the
form xi1xi2 . . . xik that are up to order d. However, despite working in this
O(nd)-dimensional space, computing K(x, z) still takes only O(n) time, and
hence we never need to explicitly represent feature vectors in this very high
dimensional feature space.

Now, let’s talk about a slightly different view of kernels. Intuitively, (and
there are things wrong with this intuition, but nevermind), if φ(x) and φ(z)
are close together, then we might expect K(x, z) = φ(x)Tφ(z) to be large.
Conversely, if φ(x) and φ(z) are far apart—say nearly orthogonal to each
other—then K(x, z) = φ(x)Tφ(z) will be small. So, we can think of K(x, z)
as some measurement of how similar are φ(x) and φ(z), or of how similar are
x and z.

Given this intuition, suppose that for some learning problem that you’re
working on, you’ve come up with some function K(x, z) that you think might
be a reasonable measure of how similar x and z are. For instance, perhaps
you chose

K(x, z) = exp

(

−
||x− z||2

2σ2

)

.

This is a resonable measure of x and z’s similarity, and is close to 1 when
x and z are close, and near 0 when x and z are far apart. Can we use this
definition of K as the kernel in an SVM? In this particular example, the
answer is yes. (This kernel is called the Gaussian kernel, and corresponds

16

for n = 3)

φ(x) =













































x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3√
2cx1√
2cx2√
2cx3

c













































,

and the parameter c controls the relative weighting between the xi (first
order) and the xixj (second order) terms.

More broadly, the kernel K(x, z) = (xT z + c)d corresponds to a feature
mapping to an

(

n+d
d

)

feature space, corresponding of all monomials of the
form xi1xi2 . . . xik that are up to order d. However, despite working in this
O(nd)-dimensional space, computing K(x, z) still takes only O(n) time, and
hence we never need to explicitly represent feature vectors in this very high
dimensional feature space.

Now, let’s talk about a slightly different view of kernels. Intuitively, (and
there are things wrong with this intuition, but nevermind), if φ(x) and φ(z)
are close together, then we might expect K(x, z) = φ(x)Tφ(z) to be large.
Conversely, if φ(x) and φ(z) are far apart—say nearly orthogonal to each
other—then K(x, z) = φ(x)Tφ(z) will be small. So, we can think of K(x, z)
as some measurement of how similar are φ(x) and φ(z), or of how similar are
x and z.

Given this intuition, suppose that for some learning problem that you’re
working on, you’ve come up with some function K(x, z) that you think might
be a reasonable measure of how similar x and z are. For instance, perhaps
you chose

K(x, z) = exp

(

−
||x− z||2

2σ2

)

.

This is a resonable measure of x and z’s similarity, and is close to 1 when
x and z are close, and near 0 when x and z are far apart. Can we use this
definition of K as the kernel in an SVM? In this particular example, the
answer is yes. (This kernel is called the Gaussian kernel, and corresponds

Entries of ϕ = monomials of the form xi1xi2…xid up to degree d

More generally K(x, z) = (xTz + c)d :

Kernels
• Intuitively, if and are close together, is

large; conversely if they are far apart, is small.

• is a measure of how similar and are; consider e.g.,

• Can this be a kernel? Yes, Gaussian kernel.

• In general, can we tell if some function is a valid kernel?

• Given a finite set of points, define an Kernel matrix:

• The kernel matrix should be symmetric, and positive semi-definite.

ϕ(x) ϕ(z) K(x, z) = ϕ(x)Tϕ(z)
K(x, z)

K(x, z) x z

K(x, z)
m m × m

16

for n = 3)

φ(x) =













































x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3√
2cx1√
2cx2√
2cx3

c













































,

and the parameter c controls the relative weighting between the xi (first
order) and the xixj (second order) terms.

More broadly, the kernel K(x, z) = (xT z + c)d corresponds to a feature
mapping to an

(

n+d
d

)

feature space, corresponding of all monomials of the
form xi1xi2 . . . xik that are up to order d. However, despite working in this
O(nd)-dimensional space, computing K(x, z) still takes only O(n) time, and
hence we never need to explicitly represent feature vectors in this very high
dimensional feature space.

Now, let’s talk about a slightly different view of kernels. Intuitively, (and
there are things wrong with this intuition, but nevermind), if φ(x) and φ(z)
are close together, then we might expect K(x, z) = φ(x)Tφ(z) to be large.
Conversely, if φ(x) and φ(z) are far apart—say nearly orthogonal to each
other—then K(x, z) = φ(x)Tφ(z) will be small. So, we can think of K(x, z)
as some measurement of how similar are φ(x) and φ(z), or of how similar are
x and z.

Given this intuition, suppose that for some learning problem that you’re
working on, you’ve come up with some function K(x, z) that you think might
be a reasonable measure of how similar x and z are. For instance, perhaps
you chose

K(x, z) = exp

(

−
||x− z||2

2σ2

)

.

This is a resonable measure of x and z’s similarity, and is close to 1 when
x and z are close, and near 0 when x and z are far apart. Can we use this
definition of K as the kernel in an SVM? In this particular example, the
answer is yes. (This kernel is called the Gaussian kernel, and corresponds

17

to an infinite dimensional feature mapping φ.) But more broadly, given some
function K, how can we tell if it’s a valid kernel; i.e., can we tell if there is
some feature mapping φ so that K(x, z) = φ(x)Tφ(z) for all x, z?

Suppose for now that K is indeed a valid kernel corresponding to some
feature mapping φ. Now, consider some finite set of m points (not necessarily
the training set) {x(1), . . . , x(m)}, and let a square, m-by-m matrix K be
defined so that its (i, j)-entry is given by Kij = K(x(i), x(j)). This matrix
is called the Kernel matrix. Note that we’ve overloaded the notation and
used K to denote both the kernel function K(x, z) and the kernel matrix K,
due to their obvious close relationship.

Now, if K is a valid Kernel, then Kij = K(x(i), x(j)) = φ(x(i))Tφ(x(j)) =
φ(x(j))Tφ(x(i)) = K(x(j), x(i)) = Kji, and hence K must be symmetric. More-
over, letting φk(x) denote the k-th coordinate of the vector φ(x), we find that
for any vector z, we have

zTKz =
∑

i

∑

j

ziKijzj

=
∑

i

∑

j

ziφ(x
(i))Tφ(x(j))zj

=
∑

i

∑

j

zi
∑

k

φk(x
(i))φk(x

(j))zj

=
∑

k

∑

i

∑

j

ziφk(x
(i))φk(x

(j))zj

=
∑

k

(

∑

i

ziφk(x
(i))

)2

≥ 0.

The second-to-last step above used the same trick as you saw in Problem
set 1 Q1. Since z was arbitrary, this shows that K is positive semi-definite
(K ≥ 0).

Hence, we’ve shown that if K is a valid kernel (i.e., if it corresponds to
some feature mapping φ), then the corresponding Kernel matrix K ∈ Rm×m

is symmetric positive semidefinite. More generally, this turns out to be not
only a necessary, but also a sufficient, condition for K to be a valid kernel
(also called a Mercer kernel). The following result is due to Mercer.5

5Many texts present Mercer’s theorem in a slightly more complicated form involving
L2 functions, but when the input attributes take values in Rn, the version given here is
equivalent.

Kernels

• is straightforward whereas the positivity of the matrix:

• Since is arbitrary, the kernel matrix is positive semi-definite.

• These two conditions turn out to be not only necessary but sufficient.

Kij = Kji K

z K

17

to an infinite dimensional feature mapping φ.) But more broadly, given some
function K, how can we tell if it’s a valid kernel; i.e., can we tell if there is
some feature mapping φ so that K(x, z) = φ(x)Tφ(z) for all x, z?

Suppose for now that K is indeed a valid kernel corresponding to some
feature mapping φ. Now, consider some finite set of m points (not necessarily
the training set) {x(1), . . . , x(m)}, and let a square, m-by-m matrix K be
defined so that its (i, j)-entry is given by Kij = K(x(i), x(j)). This matrix
is called the Kernel matrix. Note that we’ve overloaded the notation and
used K to denote both the kernel function K(x, z) and the kernel matrix K,
due to their obvious close relationship.

Now, if K is a valid Kernel, then Kij = K(x(i), x(j)) = φ(x(i))Tφ(x(j)) =
φ(x(j))Tφ(x(i)) = K(x(j), x(i)) = Kji, and hence K must be symmetric. More-
over, letting φk(x) denote the k-th coordinate of the vector φ(x), we find that
for any vector z, we have

zTKz =
∑

i

∑

j

ziKijzj

=
∑

i

∑

j

ziφ(x
(i))Tφ(x(j))zj

=
∑

i

∑

j

zi
∑

k

φk(x
(i))φk(x

(j))zj

=
∑

k

∑

i

∑

j

ziφk(x
(i))φk(x

(j))zj

=
∑

k

(

∑

i

ziφk(x
(i))

)2

≥ 0.

The second-to-last step above used the same trick as you saw in Problem
set 1 Q1. Since z was arbitrary, this shows that K is positive semi-definite
(K ≥ 0).

Hence, we’ve shown that if K is a valid kernel (i.e., if it corresponds to
some feature mapping φ), then the corresponding Kernel matrix K ∈ Rm×m

is symmetric positive semidefinite. More generally, this turns out to be not
only a necessary, but also a sufficient, condition for K to be a valid kernel
(also called a Mercer kernel). The following result is due to Mercer.5

5Many texts present Mercer’s theorem in a slightly more complicated form involving
L2 functions, but when the input attributes take values in Rn, the version given here is
equivalent.

Mercer’s Theorem

• Check the validity of a kernel without constructing the feature map.

• The kernel trick has wider applications than SVM, e.g.

• In classifying digits (MNIST database), a simple polynomial kernel
or the Gaussian kernel gives extremely good performance.

• In classifying strings of English alphabets with length k, we have a
26k dim. feature space. Kernel calculations take time.

• Kernel trick: replacing by turns the algorithm to
work in higher dim. feature space.

𝒪(26)
< x, z > K(x, z)

18

Theorem (Mercer). Let K : Rn × Rn "→ R be given. Then for K
to be a valid (Mercer) kernel, it is necessary and sufficient that for any
{x(1), . . . , x(m)}, (m < ∞), the corresponding kernel matrix is symmetric
positive semi-definite.

Given a function K, apart from trying to find a feature mapping φ that
corresponds to it, this theorem therefore gives another way of testing if it is
a valid kernel. You’ll also have a chance to play with these ideas more in
problem set 2.

In class, we also briefly talked about a couple of other examples of ker-
nels. For instance, consider the digit recognition problem, in which given
an image (16x16 pixels) of a handwritten digit (0-9), we have to figure out
which digit it was. Using either a simple polynomial kernel K(x, z) = (xT z)d

or the Gaussian kernel, SVMs were able to obtain extremely good perfor-
mance on this problem. This was particularly surprising since the input
attributes x were just a 256-dimensional vector of the image pixel intensity
values, and the system had no prior knowledge about vision, or even about
which pixels are adjacent to which other ones. Another example that we
briefly talked about in lecture was that if the objects x that we are trying
to classify are strings (say, x is a list of amino acids, which strung together
form a protein), then it seems hard to construct a reasonable, “small” set of
features for most learning algorithms, especially if different strings have dif-
ferent lengths. However, consider letting φ(x) be a feature vector that counts
the number of occurrences of each length-k substring in x. If we’re consid-
ering strings of english letters, then there are 26k such strings. Hence, φ(x)
is a 26k dimensional vector; even for moderate values of k, this is probably
too big for us to efficiently work with. (e.g., 264 ≈ 460000.) However, using
(dynamic programming-ish) string matching algorithms, it is possible to ef-
ficiently compute K(x, z) = φ(x)Tφ(z), so that we can now implicitly work
in this 26k-dimensional feature space, but without ever explicitly computing
feature vectors in this space.

The application of kernels to support vector machines should already
be clear and so we won’t dwell too much longer on it here. Keep in mind
however that the idea of kernels has significantly broader applicability than
SVMs. Specifically, if you have any learning algorithm that you can write
in terms of only inner products 〈x, z〉 between input attribute vectors, then
by replacing this with K(x, z) where K is a kernel, you can “magically”
allow your algorithm to work efficiently in the high dimensional feature space
corresponding to K. For instance, this kernel trick can be applied with
the perceptron to to derive a kernel perceptron algorithm. Many of the

SVM: Soft Margins

• Earlier discussion (w/o kernel) assumed data is linearly separable.

• Mapping data to a higher dim. feature space generally increases the
chance for the data to be separable, but there is no guarantee.

• Also, choice of separating hyperplane is susceptible to outliners.

19

algorithms that we’ll see later in this class will also be amenable to this
method, which has come to be known as the “kernel trick.”

8 Regularization and the non-separable case

The derivation of the SVM as presented so far assumed that the data is
linearly separable. While mapping data to a high dimensional feature space
via φ does generally increase the likelihood that the data is separable, we
can’t guarantee that it always will be so. Also, in some cases it is not clear
that finding a separating hyperplane is exactly what we’d want to do, since
that might be susceptible to outliers. For instance, the left figure below
shows an optimal margin classifier, and when a single outlier is added in the
upper-left region (right figure), it causes the decision boundary to make a
dramatic swing, and the resulting classifier has a much smaller margin.

To make the algorithm work for non-linearly separable datasets as well
as be less sensitive to outliers, we reformulate our optimization (using "1
regularization) as follows:

minγ,w,b

1

2
||w||2 + C

m
∑

i=1

ξi

s.t. y(i)(wTx(i) + b) ≥ 1− ξi, i = 1, . . . , m

ξi ≥ 0, i = 1, . . . , m.

Thus, examples are now permitted to have (functional) margin less than 1,
and if an example has functional margin 1 − ξi (with ξ > 0), we would pay
a cost of the objective function being increased by Cξi. The parameter C
controls the relative weighting between the twin goals of making the ||w||2
small (which we saw earlier makes the margin large) and of ensuring that
most examples have functional margin at least 1.

SVM: Soft Margins

• Optimization with a soft margin (and penalty):

• Here we introduced an regularization; we allow the margin to be
less than 1 by paying a cost controlled by C.

• This SVM implementation is in the package sklearn.

• We can construct the Lagrangian:

• Like before, we can turn this primal problem into its dual problem.

L1

19

algorithms that we’ll see later in this class will also be amenable to this
method, which has come to be known as the “kernel trick.”

8 Regularization and the non-separable case

The derivation of the SVM as presented so far assumed that the data is
linearly separable. While mapping data to a high dimensional feature space
via φ does generally increase the likelihood that the data is separable, we
can’t guarantee that it always will be so. Also, in some cases it is not clear
that finding a separating hyperplane is exactly what we’d want to do, since
that might be susceptible to outliers. For instance, the left figure below
shows an optimal margin classifier, and when a single outlier is added in the
upper-left region (right figure), it causes the decision boundary to make a
dramatic swing, and the resulting classifier has a much smaller margin.

To make the algorithm work for non-linearly separable datasets as well
as be less sensitive to outliers, we reformulate our optimization (using "1
regularization) as follows:

minγ,w,b

1

2
||w||2 + C

m
∑

i=1

ξi

s.t. y(i)(wTx(i) + b) ≥ 1− ξi, i = 1, . . . , m

ξi ≥ 0, i = 1, . . . , m.

Thus, examples are now permitted to have (functional) margin less than 1,
and if an example has functional margin 1 − ξi (with ξ > 0), we would pay
a cost of the objective function being increased by Cξi. The parameter C
controls the relative weighting between the twin goals of making the ||w||2
small (which we saw earlier makes the margin large) and of ensuring that
most examples have functional margin at least 1.

20

As before, we can form the Lagrangian:

L(w, b, ξ,α, r) =
1

2
wTw+C

m
∑

i=1

ξi−
m
∑

i=1

αi

[

y(i)(xTw + b)− 1 + ξi
]

−
m
∑

i=1

riξi.

Here, the αi’s and ri’s are our Lagrange multipliers (constrained to be ≥ 0).
We won’t go through the derivation of the dual again in detail, but after
setting the derivatives with respect to w and b to zero as before, substituting
them back in, and simplifying, we obtain the following dual form of the
problem:

maxα W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉

s.t. 0 ≤ αi ≤ C, i = 1, . . . , m
m
∑

i=1

αiy
(i) = 0,

As before, we also have that w can be expressed in terms of the αi’s
as given in Equation (9), so that after solving the dual problem, we can
continue to use Equation (13) to make our predictions. Note that, somewhat
surprisingly, in adding #1 regularization, the only change to the dual problem
is that what was originally a constraint that 0 ≤ αi has now become 0 ≤
αi ≤ C. The calculation for b∗ also has to be modified (Equation 11 is no
longer valid); see the comments in the next section/Platt’s paper.

Also, the KKT dual-complementarity conditions (which in the next sec-
tion will be useful for testing for the convergence of the SMO algorithm)
are:

αi = 0 ⇒ y(i)(wTx(i) + b) ≥ 1 (14)

αi = C ⇒ y(i)(wTx(i) + b) ≤ 1 (15)

0 < αi < C ⇒ y(i)(wTx(i) + b) = 1. (16)

Now, all that remains is to give an algorithm for actually solving the dual
problem, which we will do in the next section.

9 The SMO algorithm

The SMO (sequential minimal optimization) algorithm, due to John Platt,
gives an efficient way of solving the dual problem arising from the derivation

SVM: Soft Margins
• The dual optimization problem:

• As before, we can express in terms of and make predictions:

• Some differences:

• Introducing an regularization turns to

• The solution of is modified.

• The KKT dual complementarity condition:

w αi

L1 0 ≤ αi 0 ≤ αi ≤ C
b*

20

As before, we can form the Lagrangian:

L(w, b, ξ,α, r) =
1

2
wTw+C

m
∑

i=1

ξi−
m
∑

i=1

αi

[

y(i)(xTw + b)− 1 + ξi
]

−
m
∑

i=1

riξi.

Here, the αi’s and ri’s are our Lagrange multipliers (constrained to be ≥ 0).
We won’t go through the derivation of the dual again in detail, but after
setting the derivatives with respect to w and b to zero as before, substituting
them back in, and simplifying, we obtain the following dual form of the
problem:

maxα W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉

s.t. 0 ≤ αi ≤ C, i = 1, . . . , m
m
∑

i=1

αiy
(i) = 0,

As before, we also have that w can be expressed in terms of the αi’s
as given in Equation (9), so that after solving the dual problem, we can
continue to use Equation (13) to make our predictions. Note that, somewhat
surprisingly, in adding #1 regularization, the only change to the dual problem
is that what was originally a constraint that 0 ≤ αi has now become 0 ≤
αi ≤ C. The calculation for b∗ also has to be modified (Equation 11 is no
longer valid); see the comments in the next section/Platt’s paper.

Also, the KKT dual-complementarity conditions (which in the next sec-
tion will be useful for testing for the convergence of the SMO algorithm)
are:

αi = 0 ⇒ y(i)(wTx(i) + b) ≥ 1 (14)

αi = C ⇒ y(i)(wTx(i) + b) ≤ 1 (15)

0 < αi < C ⇒ y(i)(wTx(i) + b) = 1. (16)

Now, all that remains is to give an algorithm for actually solving the dual
problem, which we will do in the next section.

9 The SMO algorithm

The SMO (sequential minimal optimization) algorithm, due to John Platt,
gives an efficient way of solving the dual problem arising from the derivation

20

As before, we can form the Lagrangian:

L(w, b, ξ,α, r) =
1

2
wTw+C

m
∑

i=1

ξi−
m
∑

i=1

αi

[

y(i)(xTw + b)− 1 + ξi
]

−
m
∑

i=1

riξi.

Here, the αi’s and ri’s are our Lagrange multipliers (constrained to be ≥ 0).
We won’t go through the derivation of the dual again in detail, but after
setting the derivatives with respect to w and b to zero as before, substituting
them back in, and simplifying, we obtain the following dual form of the
problem:

maxα W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉

s.t. 0 ≤ αi ≤ C, i = 1, . . . , m
m
∑

i=1

αiy
(i) = 0,

As before, we also have that w can be expressed in terms of the αi’s
as given in Equation (9), so that after solving the dual problem, we can
continue to use Equation (13) to make our predictions. Note that, somewhat
surprisingly, in adding #1 regularization, the only change to the dual problem
is that what was originally a constraint that 0 ≤ αi has now become 0 ≤
αi ≤ C. The calculation for b∗ also has to be modified (Equation 11 is no
longer valid); see the comments in the next section/Platt’s paper.

Also, the KKT dual-complementarity conditions (which in the next sec-
tion will be useful for testing for the convergence of the SMO algorithm)
are:

αi = 0 ⇒ y(i)(wTx(i) + b) ≥ 1 (14)

αi = C ⇒ y(i)(wTx(i) + b) ≤ 1 (15)

0 < αi < C ⇒ y(i)(wTx(i) + b) = 1. (16)

Now, all that remains is to give an algorithm for actually solving the dual
problem, which we will do in the next section.

9 The SMO algorithm

The SMO (sequential minimal optimization) algorithm, due to John Platt,
gives an efficient way of solving the dual problem arising from the derivation

13

about the specific algorithm that we’re going to use to solve the dual problem,
but if we are indeed able to solve it (i.e., find the α’s that maximize W (α)
subject to the constraints), then we can use Equation (9) to go back and find
the optimal w’s as a function of the α’s. Having found w∗, by considering
the primal problem, it is also straightforward to find the optimal value for
the intercept term b as

b∗ = −
maxi:y(i)=−1w

∗Tx(i) +mini:y(i)=1w
∗Tx(i)

2
. (11)

(Check for yourself that this is correct.)
Before moving on, let’s also take a more careful look at Equation (9),

which gives the optimal value of w in terms of (the optimal value of) α.
Suppose we’ve fit our model’s parameters to a training set, and now wish to
make a prediction at a new point input x. We would then calculate wTx+ b,
and predict y = 1 if and only if this quantity is bigger than zero. But
using (9), this quantity can also be written:

wTx+ b =

(

m
∑

i=1

αiy
(i)x(i)

)T

x+ b (12)

=
m
∑

i=1

αiy
(i)〈x(i), x〉+ b. (13)

Hence, if we’ve found the αi’s, in order to make a prediction, we have to
calculate a quantity that depends only on the inner product between x and
the points in the training set. Moreover, we saw earlier that the αi’s will all
be zero except for the support vectors. Thus, many of the terms in the sum
above will be zero, and we really need to find only the inner products between
x and the support vectors (of which there is often only a small number) in
order calculate (13) and make our prediction.

By examining the dual form of the optimization problem, we gained sig-
nificant insight into the structure of the problem, and were also able to write
the entire algorithm in terms of only inner products between input feature
vectors. In the next section, we will exploit this property to apply the ker-
nels to our classification problem. The resulting algorithm, support vector
machines, will be able to efficiently learn in very high dimensional spaces.

7 Kernels

Back in our discussion of linear regression, we had a problem in which the
input x was the living area of a house, and we considered performing regres-

13

about the specific algorithm that we’re going to use to solve the dual problem,
but if we are indeed able to solve it (i.e., find the α’s that maximize W (α)
subject to the constraints), then we can use Equation (9) to go back and find
the optimal w’s as a function of the α’s. Having found w∗, by considering
the primal problem, it is also straightforward to find the optimal value for
the intercept term b as

b∗ = −
maxi:y(i)=−1w

∗Tx(i) +mini:y(i)=1w
∗Tx(i)

2
. (11)

(Check for yourself that this is correct.)
Before moving on, let’s also take a more careful look at Equation (9),

which gives the optimal value of w in terms of (the optimal value of) α.
Suppose we’ve fit our model’s parameters to a training set, and now wish to
make a prediction at a new point input x. We would then calculate wTx+ b,
and predict y = 1 if and only if this quantity is bigger than zero. But
using (9), this quantity can also be written:

wTx+ b =

(

m
∑

i=1

αiy
(i)x(i)

)T

x+ b (12)

=
m
∑

i=1

αiy
(i)〈x(i), x〉+ b. (13)

Hence, if we’ve found the αi’s, in order to make a prediction, we have to
calculate a quantity that depends only on the inner product between x and
the points in the training set. Moreover, we saw earlier that the αi’s will all
be zero except for the support vectors. Thus, many of the terms in the sum
above will be zero, and we really need to find only the inner products between
x and the support vectors (of which there is often only a small number) in
order calculate (13) and make our prediction.

By examining the dual form of the optimization problem, we gained sig-
nificant insight into the structure of the problem, and were also able to write
the entire algorithm in terms of only inner products between input feature
vectors. In the next section, we will exploit this property to apply the ker-
nels to our classification problem. The resulting algorithm, support vector
machines, will be able to efficiently learn in very high dimensional spaces.

7 Kernels

Back in our discussion of linear regression, we had a problem in which the
input x was the living area of a house, and we considered performing regres-

12

we’ll do by setting the derivatives of L with respect to w and b to zero. We
have:

∇wL(w, b,α) = w −
m
∑

i=1

αiy
(i)x(i) = 0

This implies that

w =
m
∑

i=1

αiy
(i)x(i). (9)

As for the derivative with respect to b, we obtain

∂

∂b
L(w, b,α) =

m
∑

i=1

αiy
(i) = 0. (10)

If we take the definition of w in Equation (9) and plug that back into the
Lagrangian (Equation 8), and simplify, we get

L(w, b,α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj(x
(i))Tx(j) − b

m
∑

i=1

αiy
(i).

But from Equation (10), the last term must be zero, so we obtain

L(w, b,α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj(x
(i))Tx(j).

Recall that we got to the equation above by minimizing L with respect to w
and b. Putting this together with the constraints αi ≥ 0 (that we always had)
and the constraint (10), we obtain the following dual optimization problem:

maxα W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉.

s.t. αi ≥ 0, i = 1, . . . , m
m
∑

i=1

αiy
(i) = 0,

You should also be able to verify that the conditions required for p∗ =
d∗ and the KKT conditions (Equations 3–7) to hold are indeed satisfied in
our optimization problem. Hence, we can solve the dual in lieu of solving
the primal problem. Specifically, in the dual problem above, we have a
maximization problem in which the parameters are the αi’s. We’ll talk later

Ensemble Methods
Two heads are better than one, or「三個臭⽪匠，勝過⼀個諸葛亮」

Why Ensembles?
• Statistical: Multiple minima with same performance (training set too

small). Choosing average reduces risk of wrong hypothesis choice.

• Computational: get stuck in local minima; results (e.g. decision tree
structure + classification) vary strongly depending on training set.

• Representational: more expressive than single predictor, e.g.,
P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 41

Fig. 28. Why combining models? On the left we show that by combining simple linear hypotheses (gray lines) one can achieve better and more
flexible classifications (dark line), which is in stark contrast to the case in which one only uses a single perceptron hypothesis as shown on the
right.

This last formula is the key to understanding the power of random ensembles. Notice that by using large ensembles
(M ! 1), we can significantly reduce the variance, and for completely random ensembles where the models are
uncorrelated (⇢(x) = 0), maximally suppresses the variance! Thus, using the aggregate predictor beats down fluctuations
due to finite-sample effects. The key, as the formula indicates, is to decorrelate the models as much as possible while
still using a very large ensemble. One can be worried that this comes at the expense of a very large bias. This turns out
not to be the case. When models in the ensemble are completely random, the bias of the aggregate predictor is just the
expected bias of a single model

Bias2(x) = (f (x) � EL,✓ [ĝA
L(x, {✓})])2

= (f (x) �
1
M

MX

m=1

EL,✓ [ĝL(x, ✓m)])2 (96)

= (f (x) � µL,✓)2. (97)

Thus, for a random ensemble one can always add more models without increasing the bias. This observation lies behind
the immense power of random forest methods discussed below. For other methods, such as bagging, we will see that the
bootstrapping procedure actually does increase the bias. But in many cases, this increase in bias is negligible compared
to the reduction in variance.

8.1.2. Summarizing the theory and intuitions behind ensembles
Before discussing specific methods, let us briefly summarize why ensembles have proven so successful in many ML

applications. Dietterich (Dietterich et al., 2000) identifies three distinct shortcomings that are fixed by ensemble methods:
statistical, computational, and representational. These are explained in the following discussion from Ref. (Louppe, 2014):

The first reason is statistical. When the learning set is too small, a learning algorithm can typically find several
models in the hypothesis space H that all give the same performance on the training data. Provided their predictions
are uncorrelated, averaging several models reduces the risk of choosing the wrong hypothesis. The second reason
is computational. Many learning algorithms rely on some greedy assumption or local search that may get stuck
in local optima. As such, an ensemble made of individual models built from many different starting points may
provide a better approximation of the true unknown function than any of the single models. Finally, the third
reason is representational. In most cases, for a learning set of finite size, the true function cannot be represented
by any of the candidate models in H. By combining several models in an ensemble, it may be possible to expand
the space of representable functions and to better model the true function.

The increase in representational power of ensembles can be simply visualized. For example, the classification task
shown in Fig. 28 reveals that it is more advantageous to combine a group of simple hypotheses (vertical or horizontal
lines) than to utilize a single arbitrary linear classifier. This of course comes with the price of introducing more parameters
to our learning procedure. But if the problem itself can never be learned through a simple hypothesis, then there is no
reason to avoid applying a more complex model. Since ensemble methods reduce the variance and are often easier to
train than a single complex model, they are a powerful way of increasing representational power (also called expressivity
in the ML literature).

Our analysis also gives several intuitions for how we should construct ensembles. First, we should try to randomize
ensemble construction as much as possible to reduce the correlations between predictors in the ensemble. This ensures
that our variance will be reduced while minimizing an increase in bias due to correlated errors. Second, the ensembles

Bagging

• BAGG=Bootstrap AGGregation (Breiman 1996)

• Partition your dataset: .

• Each is large enough to learn a predictor .

• For continuous predictors, take average:

• For classification, implement majority rule:

• BAGGing significantly reduces the variance w/o increasing the bias.

ℒ → {ℒ1, …, ℒM}
ℒi gℒi

42 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 29. Shown here is the procedure of empirical bootstrapping. The goal is to assess the accuracy of a statistical quantity of interest, which in
the main text is illustrated as the sample median M̂n(D). We start from a given dataset D and bootstrap B size n datasets D?(1), . . . ,D?(B) called
the bootstrap samples. Then we compute the statistical quantity of interest on these bootstrap samples to get the median M?(k)

n , for k = 1, . . . , B.
These are then used to evaluate the accuracy of M̂n(D) (see also box on Bootstrapping in main text). It can be shown that in the n ! 1 limit the
distribution of M?(k)

n would be a Gaussian centered around M̂n(D) with variance � 2 defined by Eq. (102) scales as 1/n.

will work best for procedures where the error of the predictor is dominated by the variance and not the bias. Thus, these
methods are especially well suited for unstable procedures whose results are sensitive to small changes in the training
dataset.

Finally, we note that although the discussion above was derived in the context of continuous predictors such as
regression, the basic intuition behind using ensembles applies equally well to classification tasks. Using an ensemble
allows one to reduce the variance by averaging the result of many independent classifiers. As with regression, this
procedure works best for unstable predictors for which errors are dominated by variance due to finite sampling rather
than bias.

8.2. Bagging

BAGGing, or Bootstrap AGGregation, first introduced by Leo Breiman, is one of the most widely employed and simplest
ensemble-inspired methods (Breiman, 1996). Imagine we have a very large dataset L that we could partition into M
smaller datasets which we label {L1, . . . ,LM}. If each partition is sufficiently large to learn a predictor, we can create an
ensemble aggregate predictor composed of predictors trained on each subset of the data. For continuous predictors like
regression, this is just the average of all the individual predictors:

ĝA
L(x) =

1
M

MX

i=1

gLi (x). (98)

For classification tasks where each predictor predicts a class label j 2 {1, . . . , J}, this is just a majority vote of all the
predictors,

ĝA
L(x) = argmax

j

MX

i=1

I[gLi (x) = j], (99)

where I[gLi (x) = j] is an indicator function that is equal to one if gLi (x) = j and zero otherwise. From the theoretical
discussion above, we know that this can significantly reduce the variance without increasing the bias.

While simple and intuitive, this form of aggregation clearly works only when we have enough data in each partitioned
set Li. To see this, one can consider the extreme limit where Li contains exactly one point. In this case, the base
hypothesis gLi (x) (e.g. linear regressor) becomes extremely poor and the procedure above fails. One way to circumvent
this shortcoming is to resort to empirical bootstrapping, a resampling technique in statistics introduced by Efron (Efron,
1979) (see accompanying box and Fig. 29). The idea of empirical bootstrapping is to use sampling with replacement to
create new ‘‘bootstrapped’’ datasets {LBS1 , . . . , LBSM } from our original dataset L. These bootstrapped datasets share many

42 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 29. Shown here is the procedure of empirical bootstrapping. The goal is to assess the accuracy of a statistical quantity of interest, which in
the main text is illustrated as the sample median M̂n(D). We start from a given dataset D and bootstrap B size n datasets D?(1), . . . ,D?(B) called
the bootstrap samples. Then we compute the statistical quantity of interest on these bootstrap samples to get the median M?(k)

n , for k = 1, . . . , B.
These are then used to evaluate the accuracy of M̂n(D) (see also box on Bootstrapping in main text). It can be shown that in the n ! 1 limit the
distribution of M?(k)

n would be a Gaussian centered around M̂n(D) with variance � 2 defined by Eq. (102) scales as 1/n.

will work best for procedures where the error of the predictor is dominated by the variance and not the bias. Thus, these
methods are especially well suited for unstable procedures whose results are sensitive to small changes in the training
dataset.

Finally, we note that although the discussion above was derived in the context of continuous predictors such as
regression, the basic intuition behind using ensembles applies equally well to classification tasks. Using an ensemble
allows one to reduce the variance by averaging the result of many independent classifiers. As with regression, this
procedure works best for unstable predictors for which errors are dominated by variance due to finite sampling rather
than bias.

8.2. Bagging

BAGGing, or Bootstrap AGGregation, first introduced by Leo Breiman, is one of the most widely employed and simplest
ensemble-inspired methods (Breiman, 1996). Imagine we have a very large dataset L that we could partition into M
smaller datasets which we label {L1, . . . ,LM}. If each partition is sufficiently large to learn a predictor, we can create an
ensemble aggregate predictor composed of predictors trained on each subset of the data. For continuous predictors like
regression, this is just the average of all the individual predictors:

ĝA
L(x) =

1
M

MX

i=1

gLi (x). (98)

For classification tasks where each predictor predicts a class label j 2 {1, . . . , J}, this is just a majority vote of all the
predictors,

ĝA
L(x) = argmax

j

MX

i=1

I[gLi (x) = j], (99)

where I[gLi (x) = j] is an indicator function that is equal to one if gLi (x) = j and zero otherwise. From the theoretical
discussion above, we know that this can significantly reduce the variance without increasing the bias.

While simple and intuitive, this form of aggregation clearly works only when we have enough data in each partitioned
set Li. To see this, one can consider the extreme limit where Li contains exactly one point. In this case, the base
hypothesis gLi (x) (e.g. linear regressor) becomes extremely poor and the procedure above fails. One way to circumvent
this shortcoming is to resort to empirical bootstrapping, a resampling technique in statistics introduced by Efron (Efron,
1979) (see accompanying box and Fig. 29). The idea of empirical bootstrapping is to use sampling with replacement to
create new ‘‘bootstrapped’’ datasets {LBS1 , . . . , LBSM } from our original dataset L. These bootstrapped datasets share many

I[gℒi
(x) = j] = indicator function = 1 if gℒi

(x) = j

Empirical Bootstrapping
• Problem of BAGGing: requires a lot of data in each partition.

• Way around: empirical bootstrapping

• Price: increase in bias because we are recycling points.

• Where useful? When faced with unstable learning algorithms
(prediction error dominated by variance).

42 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 29. Shown here is the procedure of empirical bootstrapping. The goal is to assess the accuracy of a statistical quantity of interest, which in
the main text is illustrated as the sample median M̂n(D). We start from a given dataset D and bootstrap B size n datasets D?(1), . . . ,D?(B) called
the bootstrap samples. Then we compute the statistical quantity of interest on these bootstrap samples to get the median M?(k)

n , for k = 1, . . . , B.
These are then used to evaluate the accuracy of M̂n(D) (see also box on Bootstrapping in main text). It can be shown that in the n ! 1 limit the
distribution of M?(k)

n would be a Gaussian centered around M̂n(D) with variance � 2 defined by Eq. (102) scales as 1/n.

will work best for procedures where the error of the predictor is dominated by the variance and not the bias. Thus, these
methods are especially well suited for unstable procedures whose results are sensitive to small changes in the training
dataset.

Finally, we note that although the discussion above was derived in the context of continuous predictors such as
regression, the basic intuition behind using ensembles applies equally well to classification tasks. Using an ensemble
allows one to reduce the variance by averaging the result of many independent classifiers. As with regression, this
procedure works best for unstable predictors for which errors are dominated by variance due to finite sampling rather
than bias.

8.2. Bagging

BAGGing, or Bootstrap AGGregation, first introduced by Leo Breiman, is one of the most widely employed and simplest
ensemble-inspired methods (Breiman, 1996). Imagine we have a very large dataset L that we could partition into M
smaller datasets which we label {L1, . . . ,LM}. If each partition is sufficiently large to learn a predictor, we can create an
ensemble aggregate predictor composed of predictors trained on each subset of the data. For continuous predictors like
regression, this is just the average of all the individual predictors:

ĝA
L(x) =

1
M

MX

i=1

gLi (x). (98)

For classification tasks where each predictor predicts a class label j 2 {1, . . . , J}, this is just a majority vote of all the
predictors,

ĝA
L(x) = argmax

j

MX

i=1

I[gLi (x) = j], (99)

where I[gLi (x) = j] is an indicator function that is equal to one if gLi (x) = j and zero otherwise. From the theoretical
discussion above, we know that this can significantly reduce the variance without increasing the bias.

While simple and intuitive, this form of aggregation clearly works only when we have enough data in each partitioned
set Li. To see this, one can consider the extreme limit where Li contains exactly one point. In this case, the base
hypothesis gLi (x) (e.g. linear regressor) becomes extremely poor and the procedure above fails. One way to circumvent
this shortcoming is to resort to empirical bootstrapping, a resampling technique in statistics introduced by Efron (Efron,
1979) (see accompanying box and Fig. 29). The idea of empirical bootstrapping is to use sampling with replacement to
create new ‘‘bootstrapped’’ datasets {LBS1 , . . . , LBSM } from our original dataset L. These bootstrapped datasets share many

can share data points

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 43

Fig. 30. Bagging applied to the perceptron learning algorithm (PLA). Training data size n = 500, number of bootstrap datasets B = 25, each contains
50 points. Colors correspond to different classes while the marker indicates how these points are labeled: cross for true label and circle for that
obtained by bagging. Each gray dashed line indicates the prediction made, based on every bootstrap set while the dark dashed black line is the
average of these.

points, but due to the sampling with replacement, are all somewhat different from each other. In the bagging procedure,
we create an aggregate estimator by replacing the M independent datasets by the M bootstrapped estimators:

ĝBS
L (x) =

1
M

MX

i=1

gLBS
i
(x). (100)

and

ĝBS
L (x) = argmax

j

MX

i=1

I[gLBS
i
(x) = j]. (101)

This bootstrapping procedure allows us to construct an approximate ensemble and thus reduce the variance. For unstable
predictors, this can significantly improve the predictive performance. The price we pay for using bootstrapped training
datasets, as opposed to really partitioning the dataset, is an increase in the bias of our bagged estimators. To see this, note
that as the number of datasets M goes to infinity, the expectation with respect to the bootstrapped samples converges
to the empirical distribution describing the training dataset pL(x) (e.g. a delta function at each datapoint in L) which in
general is different from the true generative distribution for the data p(x).

In Fig. 30 we demonstrate bagging with a perceptron (linear classifier) as the base classifier that constitutes the
elements of the ensemble. It is clear that, although each individual classifier in the ensemble performs poorly at
classification, bagging these estimators yields reasonably good predictive performance. This raises questions like why
bagging works and how many bootstrap samples are needed. As mentioned in the discussion above, bagging is effective on
‘‘unstable’’ learning algorithms where small changes in the training set result in large changes in predictions (Breiman,
1996). When the procedure is unstable, the prediction error is dominated by the variance and one can exploit the
aggregation component of bagging to reduce the prediction error. In contrast, for a stable procedure the accuracy is limited
by the bias introduced by using bootstrapped datasets. This means that there is an instability-to-stability transition point
beyond which bagging stops improving our prediction.

Brief Introduction to Bootstrapping
Suppose we are given a finite set of n data points D = {X1, . . . , Xn} as training samples and our job is to construct

measures of confidence for our sample estimates (e.g. the confidence interval or mean-squared error of sample median
estimator). To do so, one first samples n points with replacement from D to get a new set D?(1) = {X?(1)

1 , . . . , X?(1)
n }, called

a bootstrap sample, which possibly contains repetitive elements. Then we repeat the same procedure to get in total B
such sets: D?(1), . . . ,D?(B). The next step is to use these B bootstrap sets to get the bootstrap estimate of the quantity of
interest. For example, let M?(k)

n = Median(D?(k)) be the sample median of bootstrap data D?(k). Then we can construct the

Boosting
• Idea: Give different weights to the predictors.

• Initialize equal weights points and adjust at each step.

• AdaBoost [Freud, Schapire, 1995]: Consider a classifier for

αk = 1/M ∀
y ∈ {+1, − 1}

44 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

variance of the distribution of bootstrap medians as :

dVarB(Mn) =
1

B� 1

BX

k=1

�
M?(k)

n � M̄?
n
�2

, (102)

where

M̄?
n =

1
B

BX

k=1

M?(k)
n (103)

is the mean of the median of all bootstrap samples. Specifically, Bickel and Freedman (Bickel and Freedman, 1981) and
Singh (Singh, 1981) showed that in the n!1 limit, the distribution of the bootstrap estimate will be a Gaussian centered
around M̂n(D) = Median(X1, . . . , Xn) with standard deviation proportional to 1/

p
n. This means that the bootstrap

distribution M̂?
n � M̂n approximates fairly well the sampling distribution M̂n � M from which we obtain the training

data D. Note that M is the median based on which the true distribution D is generated. In other words, if we plot the
histogram of {M?(k)

n }Bk=1, we will see that in the large n limit it can be well fitted by a Gaussian which sharp peaks at M̂n(D)
and vanishing variance whose definition is given by Eq. (102) (see Fig. 29).

8.3. Boosting

Another powerful and widely used ensemble method is Boosting. In bagging, the contribution of all predictors is
weighted equally in the bagged (aggregate) predictor. However, in principle, there are myriad ways to combine different
predictors. In some problems one might prefer to use an autocratic approach that emphasizes the best predictors, while
in others it might be better to opt for more ‘democratic’ ways as is done in bagging. In all cases, the idea is to build a
strong predictor by combining many weaker classifiers.

In boosting, an ensemble of weak classifiers {gk(x)} is combined into an aggregate, boosted classifier. However, unlike
bagging, each classifier is associated with a weight ↵k that indicates how much it contributes to the aggregate classifier

gA(x) =

MX

K=1

↵kgk(x), (104)

where
P

k ↵k = 1. For the reasons outlined above, boosting, like all ensemble methods, works best when we combine
simple, high-variance classifiers into a more complex whole.

Here, we focus on ‘‘adaptive boosting’’ or AdaBoost, first proposed by Freund and Schapire in the mid 1990s (Freund
and Schapire, 1995; Freund et al., 1999; Schapire and Freund, 2012). The basic idea behind AdaBoost, is to form the
aggregate classifier in an iterative process. Importantly, at each iteration we reweight the error function to ‘‘highlight’’
data points where the aggregate classifier performs poorly (so that in the next round the procedure put more emphasis
on making those right.) In this way, we can successively ensure that our classifier has good performance over the whole
dataset.

We now discuss the AdaBoost procedure in greater detail. Suppose that we are given a dataset L = {(xi, yi), i =

1, . . . ,N} where xi 2 X and yi 2 Y = {+1,�1}. Our objective is to find an optimal hypothesis/classifier g : X ! Y to
classify the data. Let H = {g : X ! Y} be the family of classifiers available in our ensemble. In the AdaBoost setting,
we are concerned with the classifiers that perform somehow better than ‘‘tossing a fair coin’’. This means that for each
classifier, the family H can predict yi correctly at least half of the time.

We construct the boosted classifier as follows:

• Initialize wt=1(xn) = 1/N, n = 1, . . . ,N .
• For t = 1 · · · , T (desired termination step), do:

(1) Select a hypothesis gt 2 H that minimizes the weighted error

✏t =

NX

i=1

wt (xi)1(gt (xi) 6= yi) (105)

(2) Let ↵t =
1
2 ln 1�✏t

✏t
, update the weight for each data xn by

wt+1(xn) wt (xn)
exp[�↵t yngt (xn)]

Zt
,

where Zt =
PN

n=1 wt (xn)e�↵t yngt (xn) ensures all weights add up to unity.

• Output gA(x) = sign
⇣PT

t=1 ↵t gt (x)
⌘

There are many theoretical and empirical studies on the performance of AdaBoost but they are beyond the scope of this
review. We refer interested readers to the extensive literature on boosting (Freund et al., 1999).

44 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

variance of the distribution of bootstrap medians as :

dVarB(Mn) =
1

B� 1

BX

k=1

�
M?(k)

n � M̄?
n
�2

, (102)

where

M̄?
n =

1
B

BX

k=1

M?(k)
n (103)

is the mean of the median of all bootstrap samples. Specifically, Bickel and Freedman (Bickel and Freedman, 1981) and
Singh (Singh, 1981) showed that in the n!1 limit, the distribution of the bootstrap estimate will be a Gaussian centered
around M̂n(D) = Median(X1, . . . , Xn) with standard deviation proportional to 1/

p
n. This means that the bootstrap

distribution M̂?
n � M̂n approximates fairly well the sampling distribution M̂n � M from which we obtain the training

data D. Note that M is the median based on which the true distribution D is generated. In other words, if we plot the
histogram of {M?(k)

n }Bk=1, we will see that in the large n limit it can be well fitted by a Gaussian which sharp peaks at M̂n(D)
and vanishing variance whose definition is given by Eq. (102) (see Fig. 29).

8.3. Boosting

Another powerful and widely used ensemble method is Boosting. In bagging, the contribution of all predictors is
weighted equally in the bagged (aggregate) predictor. However, in principle, there are myriad ways to combine different
predictors. In some problems one might prefer to use an autocratic approach that emphasizes the best predictors, while
in others it might be better to opt for more ‘democratic’ ways as is done in bagging. In all cases, the idea is to build a
strong predictor by combining many weaker classifiers.

In boosting, an ensemble of weak classifiers {gk(x)} is combined into an aggregate, boosted classifier. However, unlike
bagging, each classifier is associated with a weight ↵k that indicates how much it contributes to the aggregate classifier

gA(x) =

MX

K=1

↵kgk(x), (104)

where
P

k ↵k = 1. For the reasons outlined above, boosting, like all ensemble methods, works best when we combine
simple, high-variance classifiers into a more complex whole.

Here, we focus on ‘‘adaptive boosting’’ or AdaBoost, first proposed by Freund and Schapire in the mid 1990s (Freund
and Schapire, 1995; Freund et al., 1999; Schapire and Freund, 2012). The basic idea behind AdaBoost, is to form the
aggregate classifier in an iterative process. Importantly, at each iteration we reweight the error function to ‘‘highlight’’
data points where the aggregate classifier performs poorly (so that in the next round the procedure put more emphasis
on making those right.) In this way, we can successively ensure that our classifier has good performance over the whole
dataset.

We now discuss the AdaBoost procedure in greater detail. Suppose that we are given a dataset L = {(xi, yi), i =

1, . . . ,N} where xi 2 X and yi 2 Y = {+1,�1}. Our objective is to find an optimal hypothesis/classifier g : X ! Y to
classify the data. Let H = {g : X ! Y} be the family of classifiers available in our ensemble. In the AdaBoost setting,
we are concerned with the classifiers that perform somehow better than ‘‘tossing a fair coin’’. This means that for each
classifier, the family H can predict yi correctly at least half of the time.

We construct the boosted classifier as follows:

• Initialize wt=1(xn) = 1/N, n = 1, . . . ,N .
• For t = 1 · · · , T (desired termination step), do:

(1) Select a hypothesis gt 2 H that minimizes the weighted error

✏t =

NX

i=1

wt (xi)1(gt (xi) 6= yi) (105)

(2) Let ↵t =
1
2 ln 1�✏t

✏t
, update the weight for each data xn by

wt+1(xn) wt (xn)
exp[�↵t yngt (xn)]

Zt
,

where Zt =
PN

n=1 wt (xn)e�↵t yngt (xn) ensures all weights add up to unity.

• Output gA(x) = sign
⇣PT

t=1 ↵t gt (x)
⌘

There are many theoretical and empirical studies on the performance of AdaBoost but they are beyond the scope of this
review. We refer interested readers to the extensive literature on boosting (Freund et al., 1999).

44 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

variance of the distribution of bootstrap medians as :

dVarB(Mn) =
1

B� 1

BX

k=1

�
M?(k)

n � M̄?
n
�2

, (102)

where

M̄?
n =

1
B

BX

k=1

M?(k)
n (103)

is the mean of the median of all bootstrap samples. Specifically, Bickel and Freedman (Bickel and Freedman, 1981) and
Singh (Singh, 1981) showed that in the n!1 limit, the distribution of the bootstrap estimate will be a Gaussian centered
around M̂n(D) = Median(X1, . . . , Xn) with standard deviation proportional to 1/

p
n. This means that the bootstrap

distribution M̂?
n � M̂n approximates fairly well the sampling distribution M̂n � M from which we obtain the training

data D. Note that M is the median based on which the true distribution D is generated. In other words, if we plot the
histogram of {M?(k)

n }Bk=1, we will see that in the large n limit it can be well fitted by a Gaussian which sharp peaks at M̂n(D)
and vanishing variance whose definition is given by Eq. (102) (see Fig. 29).

8.3. Boosting

Another powerful and widely used ensemble method is Boosting. In bagging, the contribution of all predictors is
weighted equally in the bagged (aggregate) predictor. However, in principle, there are myriad ways to combine different
predictors. In some problems one might prefer to use an autocratic approach that emphasizes the best predictors, while
in others it might be better to opt for more ‘democratic’ ways as is done in bagging. In all cases, the idea is to build a
strong predictor by combining many weaker classifiers.

In boosting, an ensemble of weak classifiers {gk(x)} is combined into an aggregate, boosted classifier. However, unlike
bagging, each classifier is associated with a weight ↵k that indicates how much it contributes to the aggregate classifier

gA(x) =

MX

K=1

↵kgk(x), (104)

where
P

k ↵k = 1. For the reasons outlined above, boosting, like all ensemble methods, works best when we combine
simple, high-variance classifiers into a more complex whole.

Here, we focus on ‘‘adaptive boosting’’ or AdaBoost, first proposed by Freund and Schapire in the mid 1990s (Freund
and Schapire, 1995; Freund et al., 1999; Schapire and Freund, 2012). The basic idea behind AdaBoost, is to form the
aggregate classifier in an iterative process. Importantly, at each iteration we reweight the error function to ‘‘highlight’’
data points where the aggregate classifier performs poorly (so that in the next round the procedure put more emphasis
on making those right.) In this way, we can successively ensure that our classifier has good performance over the whole
dataset.

We now discuss the AdaBoost procedure in greater detail. Suppose that we are given a dataset L = {(xi, yi), i =

1, . . . ,N} where xi 2 X and yi 2 Y = {+1,�1}. Our objective is to find an optimal hypothesis/classifier g : X ! Y to
classify the data. Let H = {g : X ! Y} be the family of classifiers available in our ensemble. In the AdaBoost setting,
we are concerned with the classifiers that perform somehow better than ‘‘tossing a fair coin’’. This means that for each
classifier, the family H can predict yi correctly at least half of the time.

We construct the boosted classifier as follows:

• Initialize wt=1(xn) = 1/N, n = 1, . . . ,N .
• For t = 1 · · · , T (desired termination step), do:

(1) Select a hypothesis gt 2 H that minimizes the weighted error

✏t =

NX

i=1

wt (xi)1(gt (xi) 6= yi) (105)

(2) Let ↵t =
1
2 ln 1�✏t

✏t
, update the weight for each data xn by

wt+1(xn) wt (xn)
exp[�↵t yngt (xn)]

Zt
,

where Zt =
PN

n=1 wt (xn)e�↵t yngt (xn) ensures all weights add up to unity.

• Output gA(x) = sign
⇣PT

t=1 ↵t gt (x)
⌘

There are many theoretical and empirical studies on the performance of AdaBoost but they are beyond the scope of this
review. We refer interested readers to the extensive literature on boosting (Freund et al., 1999).

Correctly predicted points
have yngt(xn) = + 1

 (as good as guess):
do nothing

 (large error):
weights enhanced for
correctly predicted points

 (small error):
enhance weights for wrongly
predicted points.

ϵt ∼ 0.5

ϵt > 0.5

ϵt < 0.5

Boosting

• Various variants of boosted algorithms: gradient boosted trees,
XGBoost (extreme gradient boosting), ….

• You are encouraged to explore how these variants work by reading
their documentations and experimenting with them:

https://xgboost.readthedocs.io/en/latest/index.html

https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.GradientBoostingClassifier.html

Random Forest

• Multiple Decision Trees used

• Use different subsets of data for fitting a tree (bagging)

• Use different subsets of features (Outlook, Humidity) to fit the data:

• Trying to tackle high-variance in decision trees

• Reduces correlations between decision trees

• Many variants and applications; recent applications include
classifying non-Higgsable gauge groups in F-theory:

https://arxiv.org/pdf/1804.07296.pdf

SUSY Dataset

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 49

Fig. 34. Feature Importance Scores in SUSY dataset from applying XGBoost to 100,000 samples. See Notebook 10 for more details.

Fig. 34 shows the feature scores from our XGBoost algorithm for the production of electrically-charged supersymmetric
particles (�±) which decay to W bosons and an electrically neutral supersymmetric particle �0, which is invisible to the
detector. The features are a mix of eight directly measurable quantities from the detector, as well as ten hand crafted
features chosen using physics knowledge. Consistent with the physics of these supersymmetric decays in the lepton
channel, we find that the most informative features for classification are the missing transverse energy along the vector
defined by the charged leptons (Axial MET) and the missing energy magnitude due to �0.

9. An introduction to feed-forward deep neural networks (DNNs)

Over the last decade, neural networks have emerged as the one of most powerful and widely-used supervised learning
techniques. Deep Neural Networks (DNNs) have a long history (Bishop, 1995a; Schmidhuber, 2015), but re-emerged to
prominence after a rebranding as ‘‘Deep Learning’’ in the mid 2000s (Hinton et al., 2006; Hinton and Salakhutdinov, 2006).
DNNs truly caught the attention of the wider machine learning community and industry in 2012 when Alex Krizhevsky,
Ilya Sutskever, and Geoff Hinton used a GPU-based DNN model (AlexNet) to lower the error rate on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) by an incredible twelve percent from 28% to 16% (Krizhevsky et al., 2012).
Just three years later, a machine learning group from Microsoft achieved an error of 3.57% using an ultra-deep residual
neural network (ResNet) with 152 layers (He et al., 2016)! Since then, DNNs have become the workhorse technique for
many image and speech recognition based machine learning tasks. The large-scale industrial deployment of DNNs has
given rise to a number of high-level libraries and packages (Caffe, Keras, Pytorch, TensorFlow, etc.) that make it easy to
quickly code and deploy DNNs.

Conceptually, it is helpful to divide neural networks into four categories: (i) general purpose neural networks for
supervised learning, (ii) neural networks designed specifically for image processing, the most prominent example of this
class being Convolutional Neural Networks (CNNs), (iii) neural networks for sequential data such as Recurrent Neural
Networks (RNNs), and (iv) neural networks for unsupervised learning such as Deep Boltzmann Machines. Here, we
will limit our discussions to the first two categories (unsupervised learning is discussed later in the review). Though
increasingly important for many applications such as audio and speech recognition, for the sake of brevity, we omit a
discussion of sequential data and RNNs from this review. For an introduction to RNNs and LSTM networks see Chris
Olah’s blog, https://colah.github.io/posts/2015-08-Understanding-LSTMs/, and Chapter 13 of (Bishop, 2006) as well as the
introduction to RNNs in Chapter 10 of (Goodfellow et al., 2016) for sequential data.

Due to the number of recent books on deep learning (see for example Michael Nielsen’s introductory online
book (Nielsen, 2015) and the more advanced (Goodfellow et al., 2016)), the goal of this section is to give a high-level
introduction to the basic ideas behind DNNs, and provide some practical knowledge for coding simple neural nets for
supervised learning tasks (see the accompanying Notebooks). This section assumes the reader is familiar with the basic
concepts introduced in earlier sections on logistic and linear regression. Throughout, we strive to provide intuition behind
the inner workings of DNNs, as well as highlight limitations of present-day algorithms.

The influx of corporate and industrial interests has rapidly transformed the field in the last few years. This massive
influx of money and researchers has given rise to new dogmas and best practices that change rapidly. As with most
intellectual fields experiencing rapid expansion, many commonly accepted heuristics many turn out not to be as powerful
as thought (Wilson et al., 2017), and widely held beliefs not as universal as once imagined (Lee et al., 2017; Zhang et al.,
2016). This is especially true in modern neural networks where results are largely empirical and heuristic and lack the
firm footing of many earlier machine learning methods. For this reason, in this review we have chosen to emphasize tried

• Use XGBoost to classify Monte-Carlo simulations into SUSY vs SM.
We can compare performance with logistic regression done earlier.

• Feature score to rank significance of features:

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB10_CVIII-XGboost_susy.html

Summary

• Kernel methods

• Soft margins

• Ensemble Methods

• Bagging

• Boosting

• Random Forest

