PHY 835: Collider Physics Phenomenology
Machine Learning in Fundamental Physics

Gary Shiu, UW-Madison

age: Fermilab/CERN)

Lecture 9: Kernel Methods

Recap of Lecture 8

Support Vector Machines: functional and geometric margins

A simple example and animation:
https://www.youtube.com/watch?v=5zRmhOUj;GY

Optimal margin classifier

Lagrange duality

Kernel Methods

Outline for today

e Kernel methods
e Soft margins

e Ensemble Methods
* Bagging
* Boosting
e Random Forest

Ref: Andrew Ng’s Lecture Notes: https://sgfin.qgithub.io/files/notes/
CS229 Lecture Notes.pdf and 1803.08823

https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf
https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf

Feature Maps

e So far we have been considering linear separable data, what if the output
IS more accurately represented by a non-linear function e.qg.

Y = 935173 + 925172 + (9156 -+ (90

« Consider the function ¢ : R — R* known as the feature map:

1
€
P(x) = 2 | € R*
xX
s -
/ e f:
\
/ 0\—" /
attributes features

e yis a linear function over ¢(x) : y = (93)63 + 0,x° + 0, + 0, = 01 p(x).

Kernels

For linear functions, our algorithm for the optimal margin classifier
requires computing < x,z > . This suggests that we should:

<x,z2> = K(x,2) = < ¢(x), p(2) > = ()" p(2)

The kernel K(x, z) may be inexpensive to compute, even though it is
expensive to calculate ¢(x) (extremely high dimensional vector).

Using K(x, 2), we can get SVM to learn high dimensional feature
space given by ¢ without having to explicitly find/represent ¢(x).

Suppose x, z € R" and the Kernel is given by:
K(z,z) = (z12)%

What is the corresponding feature map ¢(x)?

Kernels

We can write the Kernel as:

n n n

K(z,2) = (zn;xz> (ji:cz> = > > mwmmy =y (wiwg) ()

i=1 j=1 i =1

The feature map (for n=3): e

12
123
Loy
¢(x) = | waxs
a3
I3y
32
L L33 =

Computing ¢(x) takes O(n?) time while computing K(x, z) takes only
O(n) time (linear in the dim. of the input attributes).

For a huge input dimension (say ~ 1000), this is a significant speedup.

Kernels

e For arelated Kernel:

K(z,2) = (2124 ¢)?

n n

- Z (i) (z7) + Z(\/%xz)(\/%a) + . B

L1
13
Lol
 The corresponding feature map (for n=3): T
243

o(x) = | 371
T3l
More generally K(x,z) = (xTz + c)d ; xzxz

\/%%
Entries of ¢ = monomials of the form x; x; ...x; up to degree d v2cr

\/%553
&

ij=1 i=1

« Computing K(x, z) still takes only @O(n) time, even for more general:

K(x, z) = (22 + ¢)*

Kernels

Intuitively, if ¢(x) and ¢(z) are close together, K(x, z) = ¢(x) ¢(2) is
large; conversely if they are far apart, K(x, z) is small.

K(x, 7) is a measure of how similar x and z are; consider e.qg.,

|z —2|[°
— —
K(x,z) = exp < 53

Can this be a kernel? Yes, Gaussian kernel.

In general, can we tell if some function K(x, z) is a valid kernel?

Given a finite set of m points, define an m X m Kernel matrix:
K;; = K(x@'), x(j))

The kernel matrix should be symmetric, and positive semi-definite.

Kernels

K, = Kj; is straightforward whereas the positivity of the K matrix:

dAK2 = ZZZiK’UZj

_ ZZ’Z@ (292

- ZZ%Z@«

= YF‘YW D)z,
S: (S: Z¢¢k($(i))>

> 0.

e Since z is arbitrary, the kernel matrix K is positive semi-definite.

 These two conditions turn out to be not only necessary but sufficient.

Mercer’s Theorem

Theorem (Mercer). Let K : R” x R® — R be given. Then for K
to be a valid (Mercer) kernel, it is necessary and sufficient that for any
{20 . 2™} (m < o0), the corresponding kernel matrix is symmetric

positive semi-definite.

 Check the validity of a kernel without constructing the feature map.
* The kernel trick has wider applications than SVM, e.g.

e In classifying digits (MNIST database), a simple polynomial kernel
or the Gaussian kernel gives extremely good performance.

* In classifying strings of English alphabets with length k, we have a
26% dim. feature space. Kernel calculations take ©(26) time.

« Kernel trick: replacing < x,z > by K(x, z) turns the algorithm to
work in higher dim. feature space.

SVM: Soft Margins

e Earlier discussion (w/o kernel) assumed data is linearly separable.

 Mapping data to a higher dim. feature space generally increases the
chance for the data to be separable, but there is no guarantee.

* Also, choice of separating hyperplane is susceptible to outliners.

SVM: Soft Margins

Optimization with a soft margin (and penalty):

My a,b ||w||2+CZ§Z

sty (w? (“>+b)21—§i, i=1,....m
&20, izl,...,m

Here we introduced an L, regularization; we allow the margin to be
less than 1 by paying a cost controlled by C.

This SVM implementation is in the package sklearn.

We can construct the Lagrangian:

E(w,b,{,oz,r):%wTw—kCZf ZO& a:w—kb)—l—i—g} Z?"zgz

1=1

Like before, we can turn this primal problem into its dual problem.

SVM: Soft Margins

* The dual optimization problem:
max,, ZQZ i Z y(z)y o (Z) 20)>

zgl

e As before, we can express w in terms of «; and make predictions:

w = Z oziy(i)x(i). wT:E +b = Z%y(i)@(i),x) +b.
— i=1

e Some differences:

e Introducing an L, regularizationturns 0 < a;to 0 < a;, < C

 The solution of b* is modified.

(i)(wa(i) +b)>1
D(wTz® +p) <1
D (wTz® +p) =1.

* The KKT dual complementarity condition:

=0 =
:C =
O<oq<C =

< e w

Ensemble Methods

Two heads are better than one, or T=EKI[E > BiB—EEE =]

Why Ensembles?

e Statistical: Multiple minima with same performance (training set too
small). Choosing average reduces risk of wrong hypothesis choice.

 Computational: get stuck in local minima; results (e.g. decision tree
structure + classification) vary strongly depending on training set.

* Representational: more expressive than single predictor, e.g.,

X X
X X
o o X X (o) O X
X
O x X x O 5 X X
(o) o X x o X x
o5 o0 20
© o (@) X o 0) X
X X
O O
o 99 o 5 X o o o X
o o | % o o\ X
Aggregating different linear Linear perceptron hypothesis

hypotheses

Bagging

BAGG=Bootstrap AGGregation (Breiman 1996)
Partition your dataset: & — {<£, ..., £}

Each Z; is large enough to learn a predictor 8-

For continuous predictors, take average:

For classification, implement majority rule:

M
g (X) = arg male [8.(X) = jl, I[g4 (x) =j] = indicator function = 1 1t g5 (x) =
I i

BAGGing significantly reduces the variance w/o increasing the bias.

Empirical Bootstrapping

* Problem of BAGGIng: requires a lot of data in each partition.

 Way around: empirical bootstrapping

M
n 1
EP(X) = o ;gﬁ?s (x).

Mg(l) M;(Q) M:L(B) Bootstrap
T T T replications
O pw @ "> canshare datapoints

* Price: increase in bias because we are recycling points.

* Where useful? When faced with unstable learning algorithms
(prediction error dominated by variance).

Boosting

* |ldea: Give different weights to the predictors.

M
ga(X) =) ugi(x), D ook = 1.

K=1

o Initialize equal weights o, = 1/M V points and adjust at each step.

« AdaBoost Consider a classifier fory € {+1, — 1}

e Initialize wi—(x,)=1/N,n=1,...,N.
e Fort = 1-.-, T(desired termination step), do:

(1) Select a hypothesis g; € H that minimizes the weighted error

N
€ = Z we(X;)1(g: (%) # yi)

i=1

(2) Let oy = % In]:t, update the weight for each data x,, by

expl—otYng:(Xn)]

We1(Xn) < we(X,) 7
t

where Z, = Y0 w(x,)e" @) ensures all weights add up to unity.

e Output g,(x) = sign (S Ottgt(x))

Correctly predicted points
have y g,(x,) = + 1

e, ~ 0.5 (as good as guess):
do nothing

e, > 0.5 (large error):
weights enhanced for
correctly predicted points

e, < 0.5 (small error):
enhance weights for wrongly
predicted points.

Boosting

e Various variants of boosted algorithms: gradient boosted trees,
XGBoost (extreme gradient boosting),

* You are encouraged to explore how these variants work by reading
their documentations and experimenting with them:

https:/scikit-learn.org/stable/modules/generated/
sklearn.ensemble.GradientBoostingClassifier.htmi

https://xgboost.readthedocs.io/en/latest/index.html

Random Forest

Multiple Decision Trees used

Use different subsets of data for fitting a tree (bagging)

Use different subsets of features (Outlook, Humidity) to fit the data:
Trying to tackle high-variance in decision trees

Reduces correlations between decision trees

Many variants and applications; recent applications include
classifying non-Higgsable gauge groups in F-theory:

https:/arxiv.org/pdf/1804.07296.pdf

SUSY Dataset

 Use XGBoost to classify Monte-Carlo simulations into SUSY vs SM.
We can compare performance with logistic regression done eatrlier.

* Feature score to rank significance of features:

Feature importance
| | |

axial MET ﬁ ﬁ ﬁ ﬁ =517
missing energy magnitude :]] ﬁ =505
MET_rel i I I 6] - - -
dPhi_r_b I i i — 43
lepton 2 eta : : j =16 i
lepton 1 eta j j : 396 -
missing energy phi j j : 361 -------- S i
o cos(theta_r1) . z 350 S i
S lepton 1 pT j : 351]
o lepton 2 pT : : —348 SR
L S R ' ' ; 34.6;. PR i
M_R 331 i
R 319 i S
lepton 1 phi ' : m314- i S
MT2 : : 314 i S
lepton 2 phi : : 290----- R L]
M TR 2 Z I 283t S
M_Delta_R j : 273 e L
]]]]]
0 100 200 300 400 500
F score

https:/physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB10_CVIll-XGboost_susy.html

Summary

e Kernel methods
e Soft margins

e Ensemble Methods
* Bagging
* Boosting

e Random Forest

