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Lecture 9: Kernel Methods



Recap of Lecture 8

Support Vector Machines: functional and geometric margins

A simple example and animation:
https://www.youtube.com/watch?v=5zRmhOUj;GY

Optimal margin classifier

Lagrange duality

Kernel Methods



Outline for today

e Kernel methods
e Soft margins

e Ensemble Methods
* Bagging
* Boosting
e Random Forest

Ref: Andrew Ng’s Lecture Notes: https://sgfin.qgithub.io/files/notes/
CS229 Lecture Notes.pdf and 1803.08823



https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf
https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf

Feature Maps

e So far we have been considering linear separable data, what if the output
IS more accurately represented by a non-linear function e.qg.

Y = 935173 + 925172 + (9156 -+ (90

« Consider the function ¢ : R — R* known as the feature map:
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e yis a linear function over ¢(x) : y = (93)63 + 0,x° + 0, + 0, = 01 p(x).



Kernels

For linear functions, our algorithm for the optimal margin classifier
requires computing < x,z > . This suggests that we should:

<x,z2> = K(x,2) = < ¢(x), p(2) > = ()" p(2)

The kernel K(x, z) may be inexpensive to compute, even though it is
expensive to calculate ¢(x) (extremely high dimensional vector).

Using K(x, 2), we can get SVM to learn high dimensional feature
space given by ¢ without having to explicitly find/represent ¢(x).

Suppose x, z € R" and the Kernel is given by:
K(z,z) = (z12)%

What is the corresponding feature map ¢(x)?



Kernels

We can write the Kernel as:
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The feature map (for n=3): e
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Computing ¢(x) takes O(n?) time while computing K(x, z) takes only
O(n) time (linear in the dim. of the input attributes).

For a huge input dimension (say ~ 1000), this is a significant speedup.



Kernels

e For arelated Kernel:

K(z,2) = (2124 ¢)?
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« Computing K(x, z) still takes only @O(n) time, even for more general:

K(x, z) = (22 + ¢)*



Kernels

Intuitively, if ¢(x) and ¢(z) are close together, K(x, z) = ¢(x) ¢(2) is
large; conversely if they are far apart, K(x, z) is small.

K(x, 7) is a measure of how similar x and z are; consider e.qg.,

|z —2|[°
— —
K(x,z) = exp < 53

Can this be a kernel? Yes, Gaussian kernel.

In general, can we tell if some function K(x, z) is a valid kernel?

Given a finite set of m points, define an m X m Kernel matrix:
K;; = K(x@'), x(j))

The kernel matrix should be symmetric, and positive semi-definite.



Kernels

K, = Kj; is straightforward whereas the positivity of the K matrix:
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e Since z is arbitrary, the kernel matrix K is positive semi-definite.

 These two conditions turn out to be not only necessary but sufficient.



Mercer’s Theorem

Theorem (Mercer). Let K : R” x R® — R be given. Then for K
to be a valid (Mercer) kernel, it is necessary and sufficient that for any
{20 . 2™} (m < o0), the corresponding kernel matrix is symmetric

positive semi-definite.

 Check the validity of a kernel without constructing the feature map.
* The kernel trick has wider applications than SVM, e.g.

e In classifying digits (MNIST database), a simple polynomial kernel
or the Gaussian kernel gives extremely good performance.

* In classifying strings of English alphabets with length k, we have a
26% dim. feature space. Kernel calculations take ©(26) time.

« Kernel trick: replacing < x,z > by K(x, z) turns the algorithm to
work in higher dim. feature space.



SVM: Soft Margins

e Earlier discussion (w/o kernel) assumed data is linearly separable.

 Mapping data to a higher dim. feature space generally increases the
chance for the data to be separable, but there is no guarantee.

* Also, choice of separating hyperplane is susceptible to outliners.




SVM: Soft Margins

Optimization with a soft margin (and penalty):

My a,b ||w||2+CZ§Z

sty (w? (“>+b)21—§i, i=1,....m
&20, izl,...,m

Here we introduced an L, regularization; we allow the margin to be
less than 1 by paying a cost controlled by C.

This SVM implementation is in the package sklearn.

We can construct the Lagrangian:

E(w,b,{,oz,r):%wTw—kCZf ZO& a:w—kb)—l—i—g} Z?"zgz

1=1

Like before, we can turn this primal problem into its dual problem.



SVM: Soft Margins

* The dual optimization problem:
max,, ZQZ i Z y(z)y o (Z) 20 )>

zgl

e As before, we can express w in terms of «; and make predictions:

w = Z oziy(i)x(i). wT:E +b = Z%y(i)@(i),x) +b.
— i=1

e Some differences:

e Introducing an L, regularizationturns 0 < a;to 0 < a;, < C

 The solution of b* is modified.

(i)(wa(i) +b)>1
D(wTz® +p) <1
D (wTz® +p) =1.

* The KKT dual complementarity condition:

=0 =
:C =
O<oq<C =

< e w



Ensemble Methods

Two heads are better than one, or T=EKI[E > BiB—EEE =]



Why Ensembles?

e Statistical: Multiple minima with same performance (training set too
small). Choosing average reduces risk of wrong hypothesis choice.

 Computational: get stuck in local minima; results (e.g. decision tree
structure + classification) vary strongly depending on training set.

* Representational: more expressive than single predictor, e.g.,

X X
X X
o o X X (o) O X
X
O x X x O 5 X X
(o) o X x o X x
o5 o0 20
© o (@) X o 0) X
X X
O O
o 99 o 5 X o o o X
o o | % o o\ X
Aggregating different linear Linear perceptron hypothesis

hypotheses



Bagging

BAGG=Bootstrap AGGregation (Breiman 1996)
Partition your dataset: & — {<£, ..., £}

Each Z; is large enough to learn a predictor 8-

For continuous predictors, take average:

For classification, implement majority rule:

M
g (X) = arg male [8.(X) = jl, I[g4 (x) =j] = indicator function = 1 1t g5 (x) =
I i

BAGGing significantly reduces the variance w/o increasing the bias.



Empirical Bootstrapping

* Problem of BAGGIng: requires a lot of data in each partition.

 Way around: empirical bootstrapping

M
n 1
EP(X) = o ;gﬁ?s (x).

Mg(l) M;(Q) M:L(B) Bootstrap
T T T replications
O pw @ "> canshare datapoints

* Price: increase in bias because we are recycling points.

* Where useful? When faced with unstable learning algorithms
(prediction error dominated by variance).



Boosting

* |ldea: Give different weights to the predictors.

M
ga(X) =) ugi(x), D ook = 1.

K=1

o Initialize equal weights o, = 1/M V points and adjust at each step.

« AdaBoost Consider a classifier fory € {+1, — 1}

e Initialize wi—(x,)=1/N,n=1,...,N.
e Fort = 1-.-, T(desired termination step), do:

(1) Select a hypothesis g; € H that minimizes the weighted error

N
€ = Z we(X;)1(g: (%) # yi)

i=1

(2) Let oy = % In ]:t, update the weight for each data x,, by

expl—otYng:(Xn)]

We1(Xn) < we(X,) 7
t

where Z, = Y0 w(x,)e" @) ensures all weights add up to unity.

e Output g,(x) = sign ( S Ottgt(x))

Correctly predicted points
have y g,(x,) = + 1

e, ~ 0.5 (as good as guess):
do nothing

e, > 0.5 (large error):
weights enhanced for
correctly predicted points

e, < 0.5 (small error):
enhance weights for wrongly
predicted points.



Boosting

e Various variants of boosted algorithms: gradient boosted trees,
XGBoost (extreme gradient boosting), ....

* You are encouraged to explore how these variants work by reading
their documentations and experimenting with them:

https:/scikit-learn.org/stable/modules/generated/
sklearn.ensemble.GradientBoostingClassifier.htmi

https://xgboost.readthedocs.io/en/latest/index.html



Random Forest

Multiple Decision Trees used

Use different subsets of data for fitting a tree (bagging)

Use different subsets of features (Outlook, Humidity) to fit the data:
Trying to tackle high-variance in decision trees

Reduces correlations between decision trees

Many variants and applications; recent applications include
classifying non-Higgsable gauge groups in F-theory:

https:/arxiv.org/pdf/1804.07296.pdf



SUSY Dataset

 Use XGBoost to classify Monte-Carlo simulations into SUSY vs SM.
We can compare performance with logistic regression done eatrlier.

* Feature score to rank significance of features:

Feature importance
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https:/physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB10_CVIll-XGboost_susy.html



Summary

e Kernel methods
e Soft margins

e Ensemble Methods
* Bagging
* Boosting

e Random Forest



